Arbuscular mycorrhizal fungi affect the expression of PxNHX gene family, improve photosynthesis and promote Populus simonii×P. nigra growth under saline-alkali stress

IntroductionSaline-alkali stress seriously endangers the normal growth of Populus simonii×P. nigra. Arbuscular mycorrhizal (AM) fungi can enhance the saline-alkali tolerance of plants by establishing a symbiotic relationship with them.MethodsIn this study, a pot experiment was conducted to simulate...

Full description

Bibliographic Details
Main Authors: Fengxin Dong, Yihan Wang, Jing Tao, Tingying Xu, Ming Tang
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2023.1104095/full
Description
Summary:IntroductionSaline-alkali stress seriously endangers the normal growth of Populus simonii×P. nigra. Arbuscular mycorrhizal (AM) fungi can enhance the saline-alkali tolerance of plants by establishing a symbiotic relationship with them.MethodsIn this study, a pot experiment was conducted to simulate a saline-alkali environment where Populus simonii×P. nigra were inoculated with Funneliformis mosseae to explore their effects on the saline-alkali tolerance of Populus simonii×P. nigra.Results and DiscussionOur results show that a total of 8 NHX gene family members are identified in Populus simonii×P. nigra. F. mosseae regulate the distribution of Na+ by inducing the expression of PxNHXs. The pH value of poplar rhizosphere soil is reduced, result in the promote absorption of Na+ by poplar, that ultimately improved the soil environment. Under saline-alkali stress, F. mosseae improve the chlorophyll fluorescence and photosynthetic parameters of poplar, promote the absorption of water, K+ and Ca2+, thus increase the plant height and fresh weight of aboveground parts, and promote the growth of poplar. Our results provide a theoretical basis for further exploring the application of AM fungi to improve the saline-alkali tolerance of plants.
ISSN:1664-462X