South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs

This study analyzed the main features (onset, demise, and length) of the South American Monsoon System (SAMS) projected in different time slices (2020–2039, 2040–2059, 2060–2079, and 2080–2099) and climate scenarios (SSP2–4.5 and SSP5–8.5). Eight global climate models (GCMs) from the Coupled Model I...

Full description

Bibliographic Details
Main Authors: Michelle Simões Reboita, Glauber Willian de Souza Ferreira, João Gabriel Martins Ribeiro, Rosmeri Porfírio da Rocha, Vadlamudi Brahmananda Rao
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/9/1380
Description
Summary:This study analyzed the main features (onset, demise, and length) of the South American Monsoon System (SAMS) projected in different time slices (2020–2039, 2040–2059, 2060–2079, and 2080–2099) and climate scenarios (SSP2–4.5 and SSP5–8.5). Eight global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that perform well in representing South America’s historical climate (1995–2014) were initially selected. Thus, the bias correction–statistical downscaling (BCSD) technique, using quantile delta mapping (QDM), was applied in each model to obtain higher-resolution projections than their original grid. The horizontal resolution adopted was 0.5° of latitude × longitude, the same as the Climate Prediction Center precipitation analysis used as a reference dataset in BCSD. The QDM technique improved the monsoon onset west of 60° W and the simulated demise and length in southwestern Amazonia. Raw and BCSD ensembles project an onset delay of approximately three pentads compared to the historical period over almost all regions and a demise delay of two pentads northward 20° S. Additionally, the BCSD ensemble projects a reduced length with statistical significance in most South Atlantic Convergence Zone regions and a delay of three pentads in the demise over the Brazilian Amazon from the second half of the 21st century.
ISSN:2073-4433