A 30 MeV-cyclotron-based quasi-monoenergetic neutron source
This study developed a quasi-monoenergetic neutron source (QMN) for the semiconductor device's soft error rate test (SER). Quasi-monoenergetic neutrons are generated by Be(p,n)B99 nuclear reaction with a 1 mm beryllium target and 30 MeV protons from a cyclotron. An 8 mm water in the back of the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-05-01
|
Series: | Nuclear Engineering and Technology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1738573323000621 |
Summary: | This study developed a quasi-monoenergetic neutron source (QMN) for the semiconductor device's soft error rate test (SER). Quasi-monoenergetic neutrons are generated by Be(p,n)B99 nuclear reaction with a 1 mm beryllium target and 30 MeV protons from a cyclotron. An 8 mm water in the back of the beryllium target is used for avoiding proton penetration. The neutron spectra simulated by MCNP showed that the peak energy was around 26.5 MeV. The heat flow and mechanical properties are numerically analyzed, and the safe operating conditions are therefore determined. |
---|---|
ISSN: | 1738-5733 |