Molybdic Acid-Functionalized Nano-Fe3O4@TiO2 as a Novel and Magnetically Separable Catalyst for the Synthesis of Coumarin-Containing Sulfonamide Derivatives

Supported molybdic acid on nano-Fe3O4@TiO2 (Fe3O4@TiO2@(CH2)3OMoO3H) has been successfully prepared, characterized and applied as a catalyst for the synthesis of sulfonamide containing coumarin moieties. The prepared Fe3O4 nanoparticles by coprecipitation of Fe2+ and Fe3+ ions were treated with tetr...

Full description

Bibliographic Details
Main Authors: Jamileh Etemad Gholtash, Mahnaz Farahi, Bahador Karami, Mahsa Abdollahi
Format: Article
Language:English
Published: Slovenian Chemical Society 2020-09-01
Series:Acta Chimica Slovenica
Subjects:
Online Access:https://journals.matheo.si/index.php/ACSi/article/view/5825
Description
Summary:Supported molybdic acid on nano-Fe3O4@TiO2 (Fe3O4@TiO2@(CH2)3OMoO3H) has been successfully prepared, characterized and applied as a catalyst for the synthesis of sulfonamide containing coumarin moieties. The prepared Fe3O4 nanoparticles by coprecipitation of Fe2+ and Fe3+ ions were treated with tetraethyl orthotitanate to obtain Fe3O4@TiO2. By anchoring 3-chloropropyltriethoxysilan on Fe3O4@TiO2 followed by reacting with molybdic acid, the desired catalyst was produced. The synthesized catalyst was characterized using XRD, SEM, EDS, FT-IR and VSM analysis. Fe3O4@TiO2@(CH2)3OMoO3H was used as a catalyst for the synthesis of sulfonamide containing coumarin moieties via a three-component reaction of aryl aldehydes, para-toluenesulfonamide and 4-hydroxycoumarin or 5,7-dihydroxy-4-methylcoumarin. The catalyst recovery test showed the catalyst is highly reusable without losing its activity.
ISSN:1318-0207
1580-3155