Effect of Heat Treatment on the Mechanical and Tribological Properties of Dual-Reinforced Cold-Sprayed Al Coatings

The aluminum cold spray feedstock powder was single- and dual-reinforced with no greater than 2 vol% boron nitride nanoplatelets (BNNP) and/or nanometric boron carbide (nB<sub>4</sub>C). These powders were cold sprayed onto Al-6061 substrates and then heat-treated in an argon environment...

Full description

Bibliographic Details
Main Authors: Kia Min Phua, Thomas Stapel, Troy Y. Ansell
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Journal of Manufacturing and Materials Processing
Subjects:
Online Access:https://www.mdpi.com/2504-4494/7/1/32
Description
Summary:The aluminum cold spray feedstock powder was single- and dual-reinforced with no greater than 2 vol% boron nitride nanoplatelets (BNNP) and/or nanometric boron carbide (nB<sub>4</sub>C). These powders were cold sprayed onto Al-6061 substrates and then heat-treated in an argon environment. In addition, micro- and nano-indentation hardness and wear testing were performed on the heat-treated samples. Further microscopy and optical profilometry were used to characterize the microstructure and wear track volumes. Minimal changes to the splat structure were observed after heat treatment. However, when compared to the pure Al coating, microhardness improved with reinforcement after treatment at 500 °C, while nanohardness improved only in the dual-reinforced coatings, again after treatment at 500 °C. The elastic modulus generally decreased for the reinforced coatings after treatment; however, indentation test results were mixed. The wear testing done on samples heat treated at 500 °C for one hour showed increases in the specific wear rate for single-reinforced coatings but decreases in the dual-reinforced coatings. These results indicate that both dual-reinforcement and heat treatment are required for improvements in the mechanical and tribological properties of Al nanocomposites.
ISSN:2504-4494