New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation

The aim of this study was to synthesize novel enaminonitrile derivatives starting from 2-aminobenzimidazole and utilize this derivative for the preparation of novel heterocyclic compounds and assess their function for biological activity screening. The key precursor N-(1H-benzo[d]imidazol-2-yl)carbo...

Full description

Bibliographic Details
Main Author: Rami J. Obaid
Format: Article
Language:English
Published: Elsevier 2023-02-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535222008218
_version_ 1797952745224798208
author Rami J. Obaid
author_facet Rami J. Obaid
author_sort Rami J. Obaid
collection DOAJ
description The aim of this study was to synthesize novel enaminonitrile derivatives starting from 2-aminobenzimidazole and utilize this derivative for the preparation of novel heterocyclic compounds and assess their function for biological activity screening. The key precursor N-(1H-benzo[d]imidazol-2-yl)carbonohydrazonoyl dicyanide (2) was prepared in pyridine by coupling of diazotized 2-aminobenzimidazole (1) with malononitrile. Compound 2 was subjected to react with various secondary amines such as piperidine, morpholine, piperazine, diphenylamine, N-methylglucamine, and diethanolamine in boiling ethanol to give the acrylonitriles (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperidin-1-yl)acrylonitrile (3), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-morpholinoacrylonitrile (4), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperazin-1-yl)acrylonitrile (5), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(diphenylamino)acrylonitrile (6), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)acrylonitrile (7), and (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(bis(2-hydroxyethyl)amino)acrylonitrile (8), respectively. It has been found that the behaviour of nitrile derivative 2 towards hydrazine hydrate to the creation of 4-((1H-benzo[d]imidazol-2-yl)diazenyl)-1H-pyrazole-3,5-diamine (9). The reaction of malononitrile with compound 2 in an ethanolic solution catalyzed with sodium ethoxide afforded 4-amino-1-(1H-benzo[d]imidazol-2-yl)-6-imino-1,6-dihydropyridazine-3,5-dicarbonitrile (11). Moreover, malononitrile reacted with 7 in a boiling ethanolic sodium ethoxide solution to give 2-(5-((1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)pyrimidin-2-yl)acetonitrile (14). Heating 7 in boiling acetic anhydride and pyridine afforded (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-1-(N-acetylacetamido)-2-cyanovinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (15). When compound 15 is heated for a long time in refluxing DMF including a catalytic of TEA, cyclization occurs to give the corresponding (2R,3R,4R,5S)-6-((1-acetyl-3-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-oxo-1,6-dihydropyridin-2-yl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (16). In addition, triethyl orthoformate was reacted with compound 7 in the presence of acetic anhydride to afford the corresponding ethoxymethyleneamino derivative (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(((E) ethoxymethylene)amino)vinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (17). Also, it has been found that heating a mixture of 7 with DMF/DMA in anhydrous xylene yielded compound (1E)-N'-((1E)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)vinyl)-N,N-dimethylformimidamide (18). In addition, compound 7, when reacted with several acid anhydrides, allowed the matching phthalimide derivatives 19–26. The results showed that compound 14 has significantly higher ABTS and antitumor activities than the other compounds. Molecular modelling was also studied for compounds 22 and 24. The viability of four many cell lines—the African green monkey kidney epithelial cells (VERO), human breast adenocarcinoma cell line (MCF-7), human lung fibroblast cell line (WI-38), and human hepatocellular liver carcinoma cell line (HepG2) was examined to determine the antitumor activities of the newly synthesized compounds. Also, it was found that compounds 9, 11, 15, 16, 22, 23, 24 and 25 are strong against HepG2 cell lines, while 16, 22, and 25 are strong against WI-38 cell lines. Moreover, it was also found that compounds 16 and 22 are strong against VERO cell lines. On the other hand, compounds 7, 14, 15, 16, and 22 are strong while the rest of the other compounds are moderate against the MCF-7 cell line. The result of docking showed that compound 24 got stabilized inside the pocket with a very promising binding score of − 8.12 through hydrogen bonds with Arg184 and Lys179, respectively.
first_indexed 2024-04-10T22:52:11Z
format Article
id doaj.art-0d88a894b164440d88da35088d3bb299
institution Directory Open Access Journal
issn 1878-5352
language English
last_indexed 2024-04-10T22:52:11Z
publishDate 2023-02-01
publisher Elsevier
record_format Article
series Arabian Journal of Chemistry
spelling doaj.art-0d88a894b164440d88da35088d3bb2992023-01-15T04:21:43ZengElsevierArabian Journal of Chemistry1878-53522023-02-01162104505New benzimidazole derivatives: Design, synthesis, docking, and biological evaluationRami J. Obaid0Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, 21955 Makkah, Saudi ArabiaThe aim of this study was to synthesize novel enaminonitrile derivatives starting from 2-aminobenzimidazole and utilize this derivative for the preparation of novel heterocyclic compounds and assess their function for biological activity screening. The key precursor N-(1H-benzo[d]imidazol-2-yl)carbonohydrazonoyl dicyanide (2) was prepared in pyridine by coupling of diazotized 2-aminobenzimidazole (1) with malononitrile. Compound 2 was subjected to react with various secondary amines such as piperidine, morpholine, piperazine, diphenylamine, N-methylglucamine, and diethanolamine in boiling ethanol to give the acrylonitriles (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperidin-1-yl)acrylonitrile (3), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-morpholinoacrylonitrile (4), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperazin-1-yl)acrylonitrile (5), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(diphenylamino)acrylonitrile (6), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)acrylonitrile (7), and (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(bis(2-hydroxyethyl)amino)acrylonitrile (8), respectively. It has been found that the behaviour of nitrile derivative 2 towards hydrazine hydrate to the creation of 4-((1H-benzo[d]imidazol-2-yl)diazenyl)-1H-pyrazole-3,5-diamine (9). The reaction of malononitrile with compound 2 in an ethanolic solution catalyzed with sodium ethoxide afforded 4-amino-1-(1H-benzo[d]imidazol-2-yl)-6-imino-1,6-dihydropyridazine-3,5-dicarbonitrile (11). Moreover, malononitrile reacted with 7 in a boiling ethanolic sodium ethoxide solution to give 2-(5-((1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)pyrimidin-2-yl)acetonitrile (14). Heating 7 in boiling acetic anhydride and pyridine afforded (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-1-(N-acetylacetamido)-2-cyanovinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (15). When compound 15 is heated for a long time in refluxing DMF including a catalytic of TEA, cyclization occurs to give the corresponding (2R,3R,4R,5S)-6-((1-acetyl-3-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-oxo-1,6-dihydropyridin-2-yl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (16). In addition, triethyl orthoformate was reacted with compound 7 in the presence of acetic anhydride to afford the corresponding ethoxymethyleneamino derivative (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(((E) ethoxymethylene)amino)vinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (17). Also, it has been found that heating a mixture of 7 with DMF/DMA in anhydrous xylene yielded compound (1E)-N'-((1E)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)vinyl)-N,N-dimethylformimidamide (18). In addition, compound 7, when reacted with several acid anhydrides, allowed the matching phthalimide derivatives 19–26. The results showed that compound 14 has significantly higher ABTS and antitumor activities than the other compounds. Molecular modelling was also studied for compounds 22 and 24. The viability of four many cell lines—the African green monkey kidney epithelial cells (VERO), human breast adenocarcinoma cell line (MCF-7), human lung fibroblast cell line (WI-38), and human hepatocellular liver carcinoma cell line (HepG2) was examined to determine the antitumor activities of the newly synthesized compounds. Also, it was found that compounds 9, 11, 15, 16, 22, 23, 24 and 25 are strong against HepG2 cell lines, while 16, 22, and 25 are strong against WI-38 cell lines. Moreover, it was also found that compounds 16 and 22 are strong against VERO cell lines. On the other hand, compounds 7, 14, 15, 16, and 22 are strong while the rest of the other compounds are moderate against the MCF-7 cell line. The result of docking showed that compound 24 got stabilized inside the pocket with a very promising binding score of − 8.12 through hydrogen bonds with Arg184 and Lys179, respectively.http://www.sciencedirect.com/science/article/pii/S1878535222008218EnaminonitrileN-MethylglucamineAzo compoundsPyrazolePyrimidineN-phthalimide
spellingShingle Rami J. Obaid
New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
Arabian Journal of Chemistry
Enaminonitrile
N-Methylglucamine
Azo compounds
Pyrazole
Pyrimidine
N-phthalimide
title New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
title_full New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
title_fullStr New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
title_full_unstemmed New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
title_short New benzimidazole derivatives: Design, synthesis, docking, and biological evaluation
title_sort new benzimidazole derivatives design synthesis docking and biological evaluation
topic Enaminonitrile
N-Methylglucamine
Azo compounds
Pyrazole
Pyrimidine
N-phthalimide
url http://www.sciencedirect.com/science/article/pii/S1878535222008218
work_keys_str_mv AT ramijobaid newbenzimidazolederivativesdesignsynthesisdockingandbiologicalevaluation