A review of experimental studies on sand screen selection for unconsolidated sandstone reservoirs
Abstract Sand production is a problem that affects hydrocarbon production from unconsolidated sandstone reservoirs. Several factors, such as the strength of the reservoir, its lithification and cementation and reduction in pore pressure, may cause sand to be separated from the rock and transported b...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-01-01
|
Series: | Journal of Petroleum Exploration and Production Technology |
Subjects: | |
Online Access: | https://doi.org/10.1007/s13202-019-00826-y |
Summary: | Abstract Sand production is a problem that affects hydrocarbon production from unconsolidated sandstone reservoirs. Several factors, such as the strength of the reservoir, its lithification and cementation and reduction in pore pressure, may cause sand to be separated from the rock and transported by hydrocarbons to the well. Producing sand commonly causes erosion and corrosion of downhole and surface equipment, leading to production interruptions and sometimes forces operators to shut-in wells. Several different methods of sand control are available to reduce the impact of sand production. The reviewed papers suggest that the most suitable methods for unconsolidated sandstone reservoirs are stand-alone screens and gravel packs. Because of the cost and complexity of gravel packs, stand-alone screens are usually the first choice. These screens have different geometries, and selection of the most suitable screen depends on the particle size distribution of the grains in the formation and other reservoir and production parameters. A screen retention test, run in a laboratory with screen samples and typical sands, is often used to ensure that the screen is suitable for the reservoir. This paper reviews the main causes of sand production, the properties of unconsolidated sandstones that predispose reservoirs to sand production problems and the selection criteria for the most suitable mitigation method. The process of selecting a screen using experimental screen retention tests is reviewed, and the limitations of these tests are also discussed. Some numerical simulations of experimental tests are also reviewed, since this represents a very cost-effective alternative to laboratory experiments. |
---|---|
ISSN: | 2190-0558 2190-0566 |