Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures

The dynamics of a homogeneous adiabatic autoignition of an ammonia/air mixture at constant volume was studied, using the algorithmic tools of Computational Singular Perturbation. Since ammonia combustion is characterized by both unrealistically long ignition delays and elevated NO<inline-formula&...

Full description

Bibliographic Details
Main Authors: Ahmed T. Khalil, Dimitris M. Manias, Efstathios-Al. Tingas, Dimitrios C. Kyritsis, Dimitris A. Goussis
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/23/4422
_version_ 1798038487220355072
author Ahmed T. Khalil
Dimitris M. Manias
Efstathios-Al. Tingas
Dimitrios C. Kyritsis
Dimitris A. Goussis
author_facet Ahmed T. Khalil
Dimitris M. Manias
Efstathios-Al. Tingas
Dimitrios C. Kyritsis
Dimitris A. Goussis
author_sort Ahmed T. Khalil
collection DOAJ
description The dynamics of a homogeneous adiabatic autoignition of an ammonia/air mixture at constant volume was studied, using the algorithmic tools of Computational Singular Perturbation. Since ammonia combustion is characterized by both unrealistically long ignition delays and elevated NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions, the time frame of action of the modes that are responsible for ignition was analyzed by calculating the developing time scales throughout the process and by studying their possible relation to NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions. The reactions that support or oppose the explosive time scale were identified, along with the variables that are related the most to the dynamics that drive the system to an explosion. It is shown that reaction H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> (+M) &#8594; OH + OH (+M) is the one contributing the most to the time scale that characterizes ignition and that its reactant H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is the species related the most to this time scale. These findings suggested that addition of H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> in the initial mixture will influence strongly the evolution of the process. It was shown that ignition of pure ammonia advanced as a slow thermal explosion with very limited chemical runaway. The ignition delay could be reduced by more than two orders of magnitude through H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> addition, which causes only a minor increase in NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions.
first_indexed 2024-04-11T21:40:53Z
format Article
id doaj.art-0da0205facd4426d82fa8d5655a54536
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-04-11T21:40:53Z
publishDate 2019-11-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-0da0205facd4426d82fa8d5655a545362022-12-22T04:01:35ZengMDPI AGEnergies1996-10732019-11-011223442210.3390/en12234422en12234422Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air MixturesAhmed T. Khalil0Dimitris M. Manias1Efstathios-Al. Tingas2Dimitrios C. Kyritsis3Dimitris A. Goussis4Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAEDepartment of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, 157 73 Athens, GreecePerth College, University of the Highlands and Islands, (UHI), Perth PH1 2NX, UKDepartment of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAEDepartment of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAEThe dynamics of a homogeneous adiabatic autoignition of an ammonia/air mixture at constant volume was studied, using the algorithmic tools of Computational Singular Perturbation. Since ammonia combustion is characterized by both unrealistically long ignition delays and elevated NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions, the time frame of action of the modes that are responsible for ignition was analyzed by calculating the developing time scales throughout the process and by studying their possible relation to NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions. The reactions that support or oppose the explosive time scale were identified, along with the variables that are related the most to the dynamics that drive the system to an explosion. It is shown that reaction H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> (+M) &#8594; OH + OH (+M) is the one contributing the most to the time scale that characterizes ignition and that its reactant H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> is the species related the most to this time scale. These findings suggested that addition of H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> in the initial mixture will influence strongly the evolution of the process. It was shown that ignition of pure ammonia advanced as a slow thermal explosion with very limited chemical runaway. The ignition delay could be reduced by more than two orders of magnitude through H<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> addition, which causes only a minor increase in NO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>x</mi> </msub> </semantics> </math> </inline-formula> emissions.https://www.mdpi.com/1996-1073/12/23/4422explosive time scalescomputational singular perturbationautoignitionammoniaadditiveshydrogen peroxideignition delay controlno<sub>x</sub>
spellingShingle Ahmed T. Khalil
Dimitris M. Manias
Efstathios-Al. Tingas
Dimitrios C. Kyritsis
Dimitris A. Goussis
Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
Energies
explosive time scales
computational singular perturbation
autoignition
ammonia
additives
hydrogen peroxide
ignition delay control
no<sub>x</sub>
title Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
title_full Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
title_fullStr Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
title_full_unstemmed Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
title_short Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH<sub>3</sub>–H<sub>2</sub>O<sub>2</sub>/Air Mixtures
title_sort algorithmic analysis of chemical dynamics of the autoignition of nh sub 3 sub h sub 2 sub o sub 2 sub air mixtures
topic explosive time scales
computational singular perturbation
autoignition
ammonia
additives
hydrogen peroxide
ignition delay control
no<sub>x</sub>
url https://www.mdpi.com/1996-1073/12/23/4422
work_keys_str_mv AT ahmedtkhalil algorithmicanalysisofchemicaldynamicsoftheautoignitionofnhsub3subhsub2subosub2subairmixtures
AT dimitrismmanias algorithmicanalysisofchemicaldynamicsoftheautoignitionofnhsub3subhsub2subosub2subairmixtures
AT efstathiosaltingas algorithmicanalysisofchemicaldynamicsoftheautoignitionofnhsub3subhsub2subosub2subairmixtures
AT dimitriosckyritsis algorithmicanalysisofchemicaldynamicsoftheautoignitionofnhsub3subhsub2subosub2subairmixtures
AT dimitrisagoussis algorithmicanalysisofchemicaldynamicsoftheautoignitionofnhsub3subhsub2subosub2subairmixtures