Pigmented melanoma cell migration study on murine syngeneic B16F10 melanoma cells or tissue transplantation models
Melanoma is a lethal form of skin cancer with poor prognosis, especially due to the early metastatic feature. Recent studies have shown that the melanin pigment influences the nanomechanical properties and, therefore, the metastatic behavior of the melanoma cells. We aimed to study the growth of sub...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ion Motofei, Carol Davila University
2019-10-01
|
Series: | Journal of Mind and Medical Sciences |
Subjects: | |
Online Access: | https://scholar.valpo.edu/cgi/viewcontent.cgi?article=1206&context=jmms |
Summary: | Melanoma is a lethal form of skin cancer with poor prognosis, especially due to the early metastatic feature. Recent studies have shown that the melanin pigment influences the nanomechanical properties and, therefore, the metastatic behavior of the melanoma cells. We aimed to study the growth of subcutaneously transplanted syngeneic melanoma tissue in female C57BL/6 mice harvested from a mouse with a four-week B16F10 melanoma. Also, we studied the effect of the melanin pigment loading on the peritumoral migratory abilities of melanoma cells. Even when the syngeneic transplant was different (cultured cells vs. tumor tissue), the morphological features and the tumor growth were similar in both groups of mice. Heavily pigmented melanoma cells had low migration abilities. Angiogenesis, the depigmentation phenomenon, and the cell shape changes were related to pigmented melanoma cell migration along the matrix collagen fibers of peritumoral structures: the abluminal face of the vessels (angiotropism), the endomysium, and the nerves (neurotropism). The replacement of the histopathological growth pattern, the absence of angiogenesis, and rapidly tumor-bearing emboli were correlated with amelanotic and low pigmented melanoma cells. This study demonstrated that syngeneic melanoma tissue transplantation was a viable technique, and that the melanin pigment loading level can affect the melanoma cell migration profile. |
---|---|
ISSN: | 2392-7674 2392-7674 |