Long-term behavior of a cyclic max-type system of difference equations

We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we r...

Full description

Bibliographic Details
Main Authors: Tatjana Stevic, Bratislav Iricanin
Format: Article
Language:English
Published: Texas State University 2015-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/234/abstr.html
_version_ 1818248508633776128
author Tatjana Stevic
Bratislav Iricanin
author_facet Tatjana Stevic
Bratislav Iricanin
author_sort Tatjana Stevic
collection DOAJ
description We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we regard that $x^{(i_1)}_n=x^{(i_2)}_n$ when $i_1\equiv i_2$ (mod $k$). We determine the set of parameters $\alpha$, p and q in $(0,\infty)^3$ for which all such solutions are bounded. In the other cases we show that the system has unbounded solutions. For the case p=q we give some sufficient conditions which guaranty the convergence of all positive solutions. The main results in this paper generalize and complement some recent ones.
first_indexed 2024-12-12T15:21:43Z
format Article
id doaj.art-0db5795be214469eb19207888c677f05
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T15:21:43Z
publishDate 2015-09-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-0db5795be214469eb19207888c677f052022-12-22T00:20:22ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-09-012015234,112Long-term behavior of a cyclic max-type system of difference equationsTatjana Stevic0Bratislav Iricanin1 Belgrade Univ., Beograd, Serbia Belgrade Univ., Beograd, Serbia We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we regard that $x^{(i_1)}_n=x^{(i_2)}_n$ when $i_1\equiv i_2$ (mod $k$). We determine the set of parameters $\alpha$, p and q in $(0,\infty)^3$ for which all such solutions are bounded. In the other cases we show that the system has unbounded solutions. For the case p=q we give some sufficient conditions which guaranty the convergence of all positive solutions. The main results in this paper generalize and complement some recent ones.http://ejde.math.txstate.edu/Volumes/2015/234/abstr.htmlMax-type system of difference equationscyclic systempositive solutionsboundedness characterglobal attractivity
spellingShingle Tatjana Stevic
Bratislav Iricanin
Long-term behavior of a cyclic max-type system of difference equations
Electronic Journal of Differential Equations
Max-type system of difference equations
cyclic system
positive solutions
boundedness character
global attractivity
title Long-term behavior of a cyclic max-type system of difference equations
title_full Long-term behavior of a cyclic max-type system of difference equations
title_fullStr Long-term behavior of a cyclic max-type system of difference equations
title_full_unstemmed Long-term behavior of a cyclic max-type system of difference equations
title_short Long-term behavior of a cyclic max-type system of difference equations
title_sort long term behavior of a cyclic max type system of difference equations
topic Max-type system of difference equations
cyclic system
positive solutions
boundedness character
global attractivity
url http://ejde.math.txstate.edu/Volumes/2015/234/abstr.html
work_keys_str_mv AT tatjanastevic longtermbehaviorofacyclicmaxtypesystemofdifferenceequations
AT bratislaviricanin longtermbehaviorofacyclicmaxtypesystemofdifferenceequations