On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle

The Pascal&#8217;s triangle is generalized to &#8220;the <i>k</i>-Pascal&#8217;s triangle&#8221; with any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8805;</mo> <mn&g...

Full description

Bibliographic Details
Main Authors: Atsushi Yamagami, Kazuki Taniguchi
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/2/288
Description
Summary:The Pascal&#8217;s triangle is generalized to &#8220;the <i>k</i>-Pascal&#8217;s triangle&#8221; with any integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>. Let <i>p</i> be any prime number. In this article, we prove that for any positive integers <i>n</i> and <i>e</i>, the <i>n</i>-th row in the <inline-formula> <math display="inline"> <semantics> <msup> <mi>p</mi> <mi>e</mi> </msup> </semantics> </math> </inline-formula>-Pascal&#8217;s triangle consists of integers which are congruent to 1 modulo <i>p</i> if and only if <i>n</i> is of the form <inline-formula> <math display="inline"> <semantics> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msup> <mi>p</mi> <mrow> <mi>e</mi> <mi>m</mi> </mrow> </msup> <mo>&#8722;</mo> <mn>1</mn> </mrow> <mrow> <msup> <mi>p</mi> <mi>e</mi> </msup> <mo>&#8722;</mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </semantics> </math> </inline-formula> with some integer <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. This is a generalization of a Lucas&#8217; result asserting that the <i>n</i>-th row in the (2-)Pascal&#8217;s triangle consists of odd integers if and only if <i>n</i> is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal&#8217;s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>p</mi> <mi>e</mi> </msup> </msup> <mo>&#8801;</mo> <msup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mi>p</mi> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>p</mi> <mrow> <mi>e</mi> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </msup> <mrow> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="4pt"></mspace> <msup> <mi>p</mi> <mi>e</mi> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> of binomial expansions which we could prove for any prime number <i>p</i> and any positive integer <i>e</i>. We think that this article is fit for the Special Issue &#8220;Number Theory and Symmetry,&#8221; since we prove a symmetric property on the 4-Pascal&#8217;s triangle by means of a number-theoretical property of binomial expansions.
ISSN:2073-8994