CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies

One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (<i>Enterococcus</i>...

Full description

Bibliographic Details
Main Authors: Manuel González de Aledo, Mónica González-Bardanca, Lucía Blasco, Olga Pacios, Inés Bleriot, Laura Fernández-García, Melisa Fernández-Quejo, María López, Germán Bou, María Tomás
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/10/7/756
Description
Summary:One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (<i>Enterococcus</i> spp., <i>Staphylococcus aureus</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, <i>Pseudomonas aeruginosa</i> and <i>Enterobacter</i> spp.) due to their profile of drug resistance and virulence. Therefore, innovative lines of treatment must be developed for these bacteria. In this review, we summarize the different strategies for the treatment and study of molecular mechanisms of AMR in the ESKAPE pathogens based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins’ technologies: loss of plasmid or cellular viability, random mutation or gene deletion as well directed mutations that lead to a gene’s loss of function.
ISSN:2079-6382