Summary: | This paper took a new energy vehicle feedback system as the research object, aiming to study the energy recovery law of the new energy vehicle under braking feedback and taxiing feedback conditions. Firstly, the braking energy feedback control strategy and different forms of taxiing energy feedback were studied. Then the integration and application of braking energy recovery system were carried out on a pure electric bus and a hybrid electric bus, with each vehicle model corresponding to different integration and test schemes, which provided a guarantee for the relevant test of real vehicle environments. Finally, relevant vehicle experiments were carried out to test the impact of superposition and coordination strategies on the contribution rate of braking energy recovery under a typical Chinese city bus circle and compared the difference in vehicle energy consumption with and without taxi feedback strategy. The test results showed that the coordinated braking energy recovery control strategy can make more effective use of the maximum torque that can be fed back by the motor, and the fuel consumption of the taxiing feedback mode was lower than that of the no taxiing feedback mode under different driving conditions.
|