Summary: | Researchers are constantly searching for innovations that can be applied to the cosmetic industry. Production of porous materials stored in a lyophilized form and swollen directly before use may be beneficial considering their facilitated packaging, transport and storage. In this study, we propose porous materials based on sodium alginate, gelatin, glycerol and lipids (cottonseed oil and beeswax) obtained by freeze-drying and cross-linking. Material composition with the most promising properties was modified by the addition of PLA microparticles with <i>Calendula officinalis</i> flower extract. The structure and properties of obtained porous materials were analyzed. ATR-FTIR, mechanical properties, residual moisture content, porosity and density were assessed, as well as swelling properties and degradation after their cross-linking. The loading capacity and in vitro release of <i>Calendula officinalis</i> flower extract were performed for samples with incorporated PLA microparticles containing plant extract. The modification of the composition and fabrication method of materials significantly influenced their physicochemical properties. The selected plant extract was successfully incorporated into polymeric microparticles that were subsequently added into developed materials. Prepared materials may be considered during designing new cosmetic formulations.
|