Integrated Radar and Communications Waveform Design Based on Multi-Symbol OFDM

Integrated radar and communications (IRC) technology has become very important for civil and military applications in recent years, and IRC waveform design is a major challenge for IRC development. In this paper, we focus on the IRC waveform design based on the multi-symbol orthogonal frequency divi...

Full description

Bibliographic Details
Main Authors: Juan Rong, Feifeng Liu, Yingjie Miao
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4705
Description
Summary:Integrated radar and communications (IRC) technology has become very important for civil and military applications in recent years, and IRC waveform design is a major challenge for IRC development. In this paper, we focus on the IRC waveform design based on the multi-symbol orthogonal frequency division multiplexing (OFDM) technique. In view of the defects resulting from high peak-to-mean envelope power ratios (PMEPRs) and high range sidelobes in IRC systems, an intelligent and effective IRC waveform design method jointly optimized with the PMEPR and peak-to-sidelobe ratio (PSLR) is proposed. Firstly, a flexible tone reservation (TR)-based IRC waveform structure is applied in both temporal and frequency domains, i.e., multi-symbol OFDM waveform. Secondly, the optimization problem considering PMEPR and PSLR and extending them to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>-norm form is reformulated. Then, the conjugate gradient of the objective function is analytically derived and the conjugate gradient algorithm (CGA) is presented to simultaneously improve the PMEPR and PSLR. Finally, the simulation results show that the proposed algorithm can efficiently generate IRC waveforms with an excellent PMEPR, PSLR, radar signal-to-noise ratio (SNR), and bit error rate (BER) performance.
ISSN:2072-4292