DNA display I. Sequence-encoded routing of DNA populations.

Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing gen...

Full description

Bibliographic Details
Main Authors: David R Halpin, Pehr B Harbury
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2004-07-01
Series:PLoS Biology
Online Access:https://doi.org/10.1371/journal.pbio.0020173
Description
Summary:Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing genes, and routing machinery made from oligonucleotides and commercially available chromatography resins. The routing machinery partitions nanomole quantities of DNA into physically distinct subpools based on sequence. Partitioning steps can be iterated indefinitely, with worst-case yields of 85% per step. These techniques facilitate DNA-programmed chemical synthesis, and thus enable a materials biology that could revolutionize drug discovery.
ISSN:1544-9173
1545-7885