Pre-analytical variables influence zinc measurement in blood samples.

Zinc deficiency continues to be a major concern for global public health. The zinc status of a target population is typically estimated by measuring circulating zinc levels, but the sampling procedures are not standardized and thus may result in analytical discrepancies. To examine this, we designed...

Full description

Bibliographic Details
Main Authors: David W Killilea, Kathleen Schultz
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0286073
_version_ 1797679339102273536
author David W Killilea
Kathleen Schultz
author_facet David W Killilea
Kathleen Schultz
author_sort David W Killilea
collection DOAJ
description Zinc deficiency continues to be a major concern for global public health. The zinc status of a target population is typically estimated by measuring circulating zinc levels, but the sampling procedures are not standardized and thus may result in analytical discrepancies. To examine this, we designed a study that controlled most of the technical parameters in order to focus on five pre-analytical variables reported to influence the measurement of zinc in blood samples, including (1) blood draw site (capillary or venous), (2) blood sample matrix (plasma or serum), (3) blood collection tube manufacturer (Becton, Dickinson and Company or Sarstedt AG & Co), (4) blood processing time (0, 4, or 24 hours), and (5) blood holding temperatures (4°C, 20°C, or 37°C). A diverse cohort of 60 healthy adults were recruited to provide sequential capillary and venous blood samples, which were carefully processed under a single chain of custody and measured for zinc content using inductively coupled plasma optical emission spectrometry. When comparing blood draw sites, the mean zinc content of capillary samples was 0.054 mg/L (8%; p<0.0001) higher than venous blood from the same donors. When comparing blood sample matrices, the mean zinc content of serum samples was 0.029 mg/L (5%; p<0.0001) higher than plasma samples from the same donors. When comparing blood collection tube manufacturer, the mean zinc content from venous blood samples did not differ between venders, but the mean zinc content from BD capillary plasma was 0.036 mg/L (6%; p<0.0001) higher than Sarstedt capillary plasma from the same donors. When comparing processing times, the mean zinc content of plasma and serum samples was 5-12% higher (p<0.0001) in samples processed 4-24 hour after collection. When comparing holding temperatures, the mean zinc content of plasma and serum samples was 0.5-7% higher (p = 0.0007 or p = 0.0061, respectively) in samples temporarily held at 20°C or 37°C after collection. Thus even with the same donors and blood draws, significant differences in zinc content were observed with different draw sites, tube types, and processing procedures, demonstrating that key pre-analytic variables can have an impact on zinc measurement, and subsequent classification of zinc status. Minimizing these pre-analytical variables is important for generating best practice guidelines for assessment of zinc status.
first_indexed 2024-03-11T23:13:09Z
format Article
id doaj.art-0de67c32476e462f89213d026a4dff71
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-03-11T23:13:09Z
publishDate 2023-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-0de67c32476e462f89213d026a4dff712023-09-21T05:32:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01189e028607310.1371/journal.pone.0286073Pre-analytical variables influence zinc measurement in blood samples.David W KillileaKathleen SchultzZinc deficiency continues to be a major concern for global public health. The zinc status of a target population is typically estimated by measuring circulating zinc levels, but the sampling procedures are not standardized and thus may result in analytical discrepancies. To examine this, we designed a study that controlled most of the technical parameters in order to focus on five pre-analytical variables reported to influence the measurement of zinc in blood samples, including (1) blood draw site (capillary or venous), (2) blood sample matrix (plasma or serum), (3) blood collection tube manufacturer (Becton, Dickinson and Company or Sarstedt AG & Co), (4) blood processing time (0, 4, or 24 hours), and (5) blood holding temperatures (4°C, 20°C, or 37°C). A diverse cohort of 60 healthy adults were recruited to provide sequential capillary and venous blood samples, which were carefully processed under a single chain of custody and measured for zinc content using inductively coupled plasma optical emission spectrometry. When comparing blood draw sites, the mean zinc content of capillary samples was 0.054 mg/L (8%; p<0.0001) higher than venous blood from the same donors. When comparing blood sample matrices, the mean zinc content of serum samples was 0.029 mg/L (5%; p<0.0001) higher than plasma samples from the same donors. When comparing blood collection tube manufacturer, the mean zinc content from venous blood samples did not differ between venders, but the mean zinc content from BD capillary plasma was 0.036 mg/L (6%; p<0.0001) higher than Sarstedt capillary plasma from the same donors. When comparing processing times, the mean zinc content of plasma and serum samples was 5-12% higher (p<0.0001) in samples processed 4-24 hour after collection. When comparing holding temperatures, the mean zinc content of plasma and serum samples was 0.5-7% higher (p = 0.0007 or p = 0.0061, respectively) in samples temporarily held at 20°C or 37°C after collection. Thus even with the same donors and blood draws, significant differences in zinc content were observed with different draw sites, tube types, and processing procedures, demonstrating that key pre-analytic variables can have an impact on zinc measurement, and subsequent classification of zinc status. Minimizing these pre-analytical variables is important for generating best practice guidelines for assessment of zinc status.https://doi.org/10.1371/journal.pone.0286073
spellingShingle David W Killilea
Kathleen Schultz
Pre-analytical variables influence zinc measurement in blood samples.
PLoS ONE
title Pre-analytical variables influence zinc measurement in blood samples.
title_full Pre-analytical variables influence zinc measurement in blood samples.
title_fullStr Pre-analytical variables influence zinc measurement in blood samples.
title_full_unstemmed Pre-analytical variables influence zinc measurement in blood samples.
title_short Pre-analytical variables influence zinc measurement in blood samples.
title_sort pre analytical variables influence zinc measurement in blood samples
url https://doi.org/10.1371/journal.pone.0286073
work_keys_str_mv AT davidwkillilea preanalyticalvariablesinfluencezincmeasurementinbloodsamples
AT kathleenschultz preanalyticalvariablesinfluencezincmeasurementinbloodsamples