Economic and Environmental Potential of Large-Scale Renewable Synthetic Jet Fuel Production through Integration into a Biomass CHP Plant in Sweden

The potential of bio-electro-jet fuel (BEJF) production with integration into an existing biomass-based combined heat and power (CHP) facility was investigated. The BEJF is produced via Fischer–Tropsch (F–T) synthesis from biogenic CO<sub>2</sub> and H<sub>2</sub> obtained by...

Full description

Bibliographic Details
Main Authors: Anton Fagerström, Omar Abdelaziz, Sofia Poulikidou, Adam Lewrén, Christian Hulteberg, Ola Wallberg, Tomas Rydberg
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/3/1114
Description
Summary:The potential of bio-electro-jet fuel (BEJF) production with integration into an existing biomass-based combined heat and power (CHP) facility was investigated. The BEJF is produced via Fischer–Tropsch (F–T) synthesis from biogenic CO<sub>2</sub> and H<sub>2</sub> obtained by water electrolysis. Techno-economic (TEA)- and life. cycle (LCA)- assessments were performed to evaluate the production cost and environmental impact of the BEJF production route. The BEJF mass fraction reached 40% of the total F–T crude produced. A reduction of 78% in heating demands was achieved through energy integration, leading to an increase in the thermal efficiency by up to 39%, based on the F–T crude. The total production cost of BEJF was in the range of EUR 1.6–2.5/liter (EUR 169–250/MWh). The GWP of the BEJF was estimated to be 19 g CO<sub>2</sub>-eq per MJ BEJF. The reduction potential in GWP in contrast to the fossil jet baseline fuel varied from 44% to more than 86%. The findings of this study underline the potential of BEJF as a resource-efficient, cost-effective, and environmentally benign alternative for the aviation sector. The outcome is expected to be applicable to different geographical locations or industrial networks when the identified influencing factors are met.
ISSN:1996-1073