Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems

Herein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐o...

Full description

Bibliographic Details
Main Authors: Lara Karam, Frédéric Adamietz, Dominique Michau, Ganapathy Senthil Murugan, Thierry Cardinal, Evelyne Fargin, Vincent Rodriguez, Kathleen A. Richardson, Marc Dussauze
Format: Article
Language:English
Published: Wiley-VCH 2021-06-01
Series:Advanced Photonics Research
Subjects:
Online Access:https://doi.org/10.1002/adpr.202000171
_version_ 1819289865028632576
author Lara Karam
Frédéric Adamietz
Dominique Michau
Ganapathy Senthil Murugan
Thierry Cardinal
Evelyne Fargin
Vincent Rodriguez
Kathleen A. Richardson
Marc Dussauze
author_facet Lara Karam
Frédéric Adamietz
Dominique Michau
Ganapathy Senthil Murugan
Thierry Cardinal
Evelyne Fargin
Vincent Rodriguez
Kathleen A. Richardson
Marc Dussauze
author_sort Lara Karam
collection DOAJ
description Herein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐order nonlinear (SONL) optical response at different scales, a key aspect of thin film's poling mechanisms compared with bulk glasses is demonstrated that lies in the appearance of a charge accumulation at the film/substrate interface and that is described by the Maxwell–Wagner effect. A way to minimize this effect is then proven by promoting an induced built‐in static field in the plane of the film using a microstructured electrode. A SONL optical susceptibility as high as 29 pm V−1 is measured and its geometry and location are controlled at the micrometer scale; it constitutes an improvement of at least one order of magnitude compared with other poled amorphous inorganic materials and is comparable with that of lithium niobate single crystal.
first_indexed 2024-12-24T03:13:38Z
format Article
id doaj.art-0e01388a28c54c12846a63d05d57949c
institution Directory Open Access Journal
issn 2699-9293
language English
last_indexed 2024-12-24T03:13:38Z
publishDate 2021-06-01
publisher Wiley-VCH
record_format Article
series Advanced Photonics Research
spelling doaj.art-0e01388a28c54c12846a63d05d57949c2022-12-21T17:17:42ZengWiley-VCHAdvanced Photonics Research2699-92932021-06-0126n/an/a10.1002/adpr.202000171Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer SystemsLara Karam0Frédéric Adamietz1Dominique Michau2Ganapathy Senthil Murugan3Thierry Cardinal4Evelyne Fargin5Vincent Rodriguez6Kathleen A. Richardson7Marc Dussauze8Institut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceOptoelectronics Research Centre University of Southampton Southampton SO17 1BJ UKInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceCREOL College of Optics and Photonics Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USAInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceHerein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐order nonlinear (SONL) optical response at different scales, a key aspect of thin film's poling mechanisms compared with bulk glasses is demonstrated that lies in the appearance of a charge accumulation at the film/substrate interface and that is described by the Maxwell–Wagner effect. A way to minimize this effect is then proven by promoting an induced built‐in static field in the plane of the film using a microstructured electrode. A SONL optical susceptibility as high as 29 pm V−1 is measured and its geometry and location are controlled at the micrometer scale; it constitutes an improvement of at least one order of magnitude compared with other poled amorphous inorganic materials and is comparable with that of lithium niobate single crystal.https://doi.org/10.1002/adpr.202000171amorphous thin filmsMaxwell–Wagner effectsecond-order optical responsethermal poling
spellingShingle Lara Karam
Frédéric Adamietz
Dominique Michau
Ganapathy Senthil Murugan
Thierry Cardinal
Evelyne Fargin
Vincent Rodriguez
Kathleen A. Richardson
Marc Dussauze
Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
Advanced Photonics Research
amorphous thin films
Maxwell–Wagner effect
second-order optical response
thermal poling
title Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
title_full Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
title_fullStr Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
title_full_unstemmed Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
title_short Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
title_sort second order optical response in electrically polarized sodo niobate amorphous thin films particularity of multilayer systems
topic amorphous thin films
Maxwell–Wagner effect
second-order optical response
thermal poling
url https://doi.org/10.1002/adpr.202000171
work_keys_str_mv AT larakaram secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT fredericadamietz secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT dominiquemichau secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT ganapathysenthilmurugan secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT thierrycardinal secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT evelynefargin secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT vincentrodriguez secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT kathleenarichardson secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems
AT marcdussauze secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems