Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems
Herein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐o...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2021-06-01
|
Series: | Advanced Photonics Research |
Subjects: | |
Online Access: | https://doi.org/10.1002/adpr.202000171 |
_version_ | 1819289865028632576 |
---|---|
author | Lara Karam Frédéric Adamietz Dominique Michau Ganapathy Senthil Murugan Thierry Cardinal Evelyne Fargin Vincent Rodriguez Kathleen A. Richardson Marc Dussauze |
author_facet | Lara Karam Frédéric Adamietz Dominique Michau Ganapathy Senthil Murugan Thierry Cardinal Evelyne Fargin Vincent Rodriguez Kathleen A. Richardson Marc Dussauze |
author_sort | Lara Karam |
collection | DOAJ |
description | Herein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐order nonlinear (SONL) optical response at different scales, a key aspect of thin film's poling mechanisms compared with bulk glasses is demonstrated that lies in the appearance of a charge accumulation at the film/substrate interface and that is described by the Maxwell–Wagner effect. A way to minimize this effect is then proven by promoting an induced built‐in static field in the plane of the film using a microstructured electrode. A SONL optical susceptibility as high as 29 pm V−1 is measured and its geometry and location are controlled at the micrometer scale; it constitutes an improvement of at least one order of magnitude compared with other poled amorphous inorganic materials and is comparable with that of lithium niobate single crystal. |
first_indexed | 2024-12-24T03:13:38Z |
format | Article |
id | doaj.art-0e01388a28c54c12846a63d05d57949c |
institution | Directory Open Access Journal |
issn | 2699-9293 |
language | English |
last_indexed | 2024-12-24T03:13:38Z |
publishDate | 2021-06-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Photonics Research |
spelling | doaj.art-0e01388a28c54c12846a63d05d57949c2022-12-21T17:17:42ZengWiley-VCHAdvanced Photonics Research2699-92932021-06-0126n/an/a10.1002/adpr.202000171Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer SystemsLara Karam0Frédéric Adamietz1Dominique Michau2Ganapathy Senthil Murugan3Thierry Cardinal4Evelyne Fargin5Vincent Rodriguez6Kathleen A. Richardson7Marc Dussauze8Institut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceOptoelectronics Research Centre University of Southampton Southampton SO17 1BJ UKInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceInstitut de Chimie de la Matière Condensée de Bordeaux UMR 5026 CNRS Université de Bordeaux 87 avenue du Dr. Albert Schweitzer Pessac Cedex 33600 FranceInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceCREOL College of Optics and Photonics Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USAInstitut des Sciences Moléculaires UMR 5255 CNRS Université de Bordeaux 351 Cours de la Libération Talence Cedex 33405 FranceHerein, our attention is focused on the second‐order optical properties of thermally poled sodo‐niobate amorphous thin films through an original methodology that combines both macroscopic and microscopic second harmonic generation techniques. By probing the geometry and the magnitude of the second‐order nonlinear (SONL) optical response at different scales, a key aspect of thin film's poling mechanisms compared with bulk glasses is demonstrated that lies in the appearance of a charge accumulation at the film/substrate interface and that is described by the Maxwell–Wagner effect. A way to minimize this effect is then proven by promoting an induced built‐in static field in the plane of the film using a microstructured electrode. A SONL optical susceptibility as high as 29 pm V−1 is measured and its geometry and location are controlled at the micrometer scale; it constitutes an improvement of at least one order of magnitude compared with other poled amorphous inorganic materials and is comparable with that of lithium niobate single crystal.https://doi.org/10.1002/adpr.202000171amorphous thin filmsMaxwell–Wagner effectsecond-order optical responsethermal poling |
spellingShingle | Lara Karam Frédéric Adamietz Dominique Michau Ganapathy Senthil Murugan Thierry Cardinal Evelyne Fargin Vincent Rodriguez Kathleen A. Richardson Marc Dussauze Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems Advanced Photonics Research amorphous thin films Maxwell–Wagner effect second-order optical response thermal poling |
title | Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems |
title_full | Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems |
title_fullStr | Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems |
title_full_unstemmed | Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems |
title_short | Second‐Order Optical Response in Electrically Polarized Sodo‐Niobate Amorphous Thin Films: Particularity of Multilayer Systems |
title_sort | second order optical response in electrically polarized sodo niobate amorphous thin films particularity of multilayer systems |
topic | amorphous thin films Maxwell–Wagner effect second-order optical response thermal poling |
url | https://doi.org/10.1002/adpr.202000171 |
work_keys_str_mv | AT larakaram secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT fredericadamietz secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT dominiquemichau secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT ganapathysenthilmurugan secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT thierrycardinal secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT evelynefargin secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT vincentrodriguez secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT kathleenarichardson secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems AT marcdussauze secondorderopticalresponseinelectricallypolarizedsodoniobateamorphousthinfilmsparticularityofmultilayersystems |