A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>

Let $k$ be a positive integer with $k\ge 2$. Let $N_k$ denote the number of $k$ tuples of consecutive integers with each of them in the form $2^x+y^2$, where $x,y$ are nonnegative integers. In this paper, we investigate the formulas for $N_k$. Actually, by using some elementary methods, we show that...

Full description

Bibliographic Details
Main Authors: Zongbing Lin, Kaimin Cheng
Format: Article
Language:English
Published: AIMS Press 2020-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020285/fulltext.html
_version_ 1828757095433895936
author Zongbing Lin
Kaimin Cheng
author_facet Zongbing Lin
Kaimin Cheng
author_sort Zongbing Lin
collection DOAJ
description Let $k$ be a positive integer with $k\ge 2$. Let $N_k$ denote the number of $k$ tuples of consecutive integers with each of them in the form $2^x+y^2$, where $x,y$ are nonnegative integers. In this paper, we investigate the formulas for $N_k$. Actually, by using some elementary methods, we show that \[{N_k} = \left\{ \begin{array}{l} + \infty, \; \; \; \; \; {\rm{if}}\; {\rm{2}} \le k \le 4, \\ 6, \; \; \; \; \; \; \; \; \; {\rm{if}}\; k = 5, \\ 3, \; \; \; \; \; \; \; \; \; {\rm{if}}\; k = 6, \\ 0, \; \; \; \; \; \; \; \; \; {\rm{otherwise}}. \end{array} \right.\]
first_indexed 2024-12-11T00:21:16Z
format Article
id doaj.art-0e06b32830be4e6bba8b8015dfce833b
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-11T00:21:16Z
publishDate 2020-06-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-0e06b32830be4e6bba8b8015dfce833b2022-12-22T01:27:43ZengAIMS PressAIMS Mathematics2473-69882020-06-01554453445810.3934/math.2020285A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>Zongbing Lin0Kaimin Cheng11 School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, P. R. China2 School of Mathematics and Information, China West Normal University, Nanchong 637009, P. R. ChinaLet $k$ be a positive integer with $k\ge 2$. Let $N_k$ denote the number of $k$ tuples of consecutive integers with each of them in the form $2^x+y^2$, where $x,y$ are nonnegative integers. In this paper, we investigate the formulas for $N_k$. Actually, by using some elementary methods, we show that \[{N_k} = \left\{ \begin{array}{l} + \infty, \; \; \; \; \; {\rm{if}}\; {\rm{2}} \le k \le 4, \\ 6, \; \; \; \; \; \; \; \; \; {\rm{if}}\; k = 5, \\ 3, \; \; \; \; \; \; \; \; \; {\rm{if}}\; k = 6, \\ 0, \; \; \; \; \; \; \; \; \; {\rm{otherwise}}. \end{array} \right.\]https://www.aimspress.com/article/10.3934/math.2020285/fulltext.htmldiophantine equationconsecutive integerssum of two powers
spellingShingle Zongbing Lin
Kaimin Cheng
A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
AIMS Mathematics
diophantine equation
consecutive integers
sum of two powers
title A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
title_full A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
title_fullStr A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
title_full_unstemmed A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
title_short A note on consecutive integers of the form 2<sup><em>x</em></sup> + <em>y</em><sup><em>2</em></sup>
title_sort note on consecutive integers of the form 2 sup em x em sup em y em sup em 2 em sup
topic diophantine equation
consecutive integers
sum of two powers
url https://www.aimspress.com/article/10.3934/math.2020285/fulltext.html
work_keys_str_mv AT zongbinglin anoteonconsecutiveintegersoftheform2supemxemsupemyemsupem2emsup
AT kaimincheng anoteonconsecutiveintegersoftheform2supemxemsupemyemsupem2emsup
AT zongbinglin noteonconsecutiveintegersoftheform2supemxemsupemyemsupem2emsup
AT kaimincheng noteonconsecutiveintegersoftheform2supemxemsupemyemsupem2emsup