Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae

Abstract Background In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. R...

Full description

Bibliographic Details
Main Authors: Alfonso Soler-Bistué, Sebastián Aguilar-Pierlé, Marc Garcia-Garcerá, Marie-Eve Val, Odile Sismeiro, Hugo Varet, Rodrigo Sieira, Evelyne Krin, Ole Skovgaard, Diego J. Comerci, Eduardo P. C. Rocha, Didier Mazel
Format: Article
Language:English
Published: BMC 2020-04-01
Series:BMC Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12915-020-00777-5
_version_ 1818153848242438144
author Alfonso Soler-Bistué
Sebastián Aguilar-Pierlé
Marc Garcia-Garcerá
Marie-Eve Val
Odile Sismeiro
Hugo Varet
Rodrigo Sieira
Evelyne Krin
Ole Skovgaard
Diego J. Comerci
Eduardo P. C. Rocha
Didier Mazel
author_facet Alfonso Soler-Bistué
Sebastián Aguilar-Pierlé
Marc Garcia-Garcerá
Marie-Eve Val
Odile Sismeiro
Hugo Varet
Rodrigo Sieira
Evelyne Krin
Ole Skovgaard
Diego J. Comerci
Eduardo P. C. Rocha
Didier Mazel
author_sort Alfonso Soler-Bistué
collection DOAJ
description Abstract Background In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. Results We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. Conclusions The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.
first_indexed 2024-12-11T14:17:08Z
format Article
id doaj.art-0e46f0997c7e457d9ba2526935b7d3fc
institution Directory Open Access Journal
issn 1741-7007
language English
last_indexed 2024-12-11T14:17:08Z
publishDate 2020-04-01
publisher BMC
record_format Article
series BMC Biology
spelling doaj.art-0e46f0997c7e457d9ba2526935b7d3fc2022-12-22T01:03:06ZengBMCBMC Biology1741-70072020-04-0118111810.1186/s12915-020-00777-5Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio choleraeAlfonso Soler-Bistué0Sebastián Aguilar-Pierlé1Marc Garcia-Garcerá2Marie-Eve Val3Odile Sismeiro4Hugo Varet5Rodrigo Sieira6Evelyne Krin7Ole Skovgaard8Diego J. Comerci9Eduardo P. C. Rocha10Didier Mazel11Institut Pasteur, Unité Plasticité du Génome Bactérien, UMR3525, CNRSInstitut Pasteur, Unité Plasticité du Génome Bactérien, UMR3525, CNRSMicrobial Evolutionary Genomics, Département Génomes et Génétique, Institut PasteurInstitut Pasteur, Unité Plasticité du Génome Bactérien, UMR3525, CNRSInstitut Pasteur, Plate-forme Transcriptome et Épigenome, Biomics, Centre d’Innovation et Recherche Technologique (Citech)Institut Pasteur, Plate-forme Transcriptome et Épigenome, Biomics, Centre d’Innovation et Recherche Technologique (Citech)Fundación Instituto Leloir, IIBBA-CONICETInstitut Pasteur, Unité Plasticité du Génome Bactérien, UMR3525, CNRSDepartment of Science and Environment, Roskilde UniversityInstituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” CONICET - Universidad Nacional de San MartínMicrobial Evolutionary Genomics, Département Génomes et Génétique, Institut PasteurInstitut Pasteur, Unité Plasticité du Génome Bactérien, UMR3525, CNRSAbstract Background In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. Results We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. Conclusions The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.http://link.springer.com/article/10.1186/s12915-020-00777-5Ribosomal proteinsMacromolecular crowdingGrowth rateVibrio choleraeBacterial chromosomeBacterial physiology
spellingShingle Alfonso Soler-Bistué
Sebastián Aguilar-Pierlé
Marc Garcia-Garcerá
Marie-Eve Val
Odile Sismeiro
Hugo Varet
Rodrigo Sieira
Evelyne Krin
Ole Skovgaard
Diego J. Comerci
Eduardo P. C. Rocha
Didier Mazel
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
BMC Biology
Ribosomal proteins
Macromolecular crowding
Growth rate
Vibrio cholerae
Bacterial chromosome
Bacterial physiology
title Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
title_full Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
title_fullStr Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
title_full_unstemmed Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
title_short Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
title_sort macromolecular crowding links ribosomal protein gene dosage to growth rate in vibrio cholerae
topic Ribosomal proteins
Macromolecular crowding
Growth rate
Vibrio cholerae
Bacterial chromosome
Bacterial physiology
url http://link.springer.com/article/10.1186/s12915-020-00777-5
work_keys_str_mv AT alfonsosolerbistue macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT sebastianaguilarpierle macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT marcgarciagarcera macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT marieeveval macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT odilesismeiro macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT hugovaret macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT rodrigosieira macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT evelynekrin macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT oleskovgaard macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT diegojcomerci macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT eduardopcrocha macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae
AT didiermazel macromolecularcrowdinglinksribosomalproteingenedosagetogrowthrateinvibriocholerae