Common terms of k-Pell numbers and Padovan or Perrin numbers

Abstract Let $$k\ge 2$$ k ≥ 2 . A generalization of the well-known Pell sequence is the k-Pell sequence. For this sequence, the first k terms are $$0,\ldots ,0,1$$ 0 , … , 0 , 1 and each term afterwards is given by the linear recurrence $$\begin{aligned} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots...

Full description

Bibliographic Details
Main Authors: Benedict Vasco Normenyo, Salah Eddine Rihane, Alain Togbé
Format: Article
Language:English
Published: SpringerOpen 2022-11-01
Series:Arabian Journal of Mathematics
Subjects:
Online Access:https://doi.org/10.1007/s40065-022-00407-8
_version_ 1797865518563065856
author Benedict Vasco Normenyo
Salah Eddine Rihane
Alain Togbé
author_facet Benedict Vasco Normenyo
Salah Eddine Rihane
Alain Togbé
author_sort Benedict Vasco Normenyo
collection DOAJ
description Abstract Let $$k\ge 2$$ k ≥ 2 . A generalization of the well-known Pell sequence is the k-Pell sequence. For this sequence, the first k terms are $$0,\ldots ,0,1$$ 0 , … , 0 , 1 and each term afterwards is given by the linear recurrence $$\begin{aligned} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}. \end{aligned}$$ P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + ⋯ + P n - k ( k ) . In this paper, we extend the previous work (Rihane and Togbé in Ann Math Inform 54:57–71, 2021) and investigate the Padovan and Perrin numbers in the k-Pell sequence.
first_indexed 2024-04-09T23:09:21Z
format Article
id doaj.art-0e54a05f03dd40969846dd8fa972e8d4
institution Directory Open Access Journal
issn 2193-5343
2193-5351
language English
last_indexed 2024-04-09T23:09:21Z
publishDate 2022-11-01
publisher SpringerOpen
record_format Article
series Arabian Journal of Mathematics
spelling doaj.art-0e54a05f03dd40969846dd8fa972e8d42023-03-22T10:27:07ZengSpringerOpenArabian Journal of Mathematics2193-53432193-53512022-11-0112121923210.1007/s40065-022-00407-8Common terms of k-Pell numbers and Padovan or Perrin numbersBenedict Vasco Normenyo0Salah Eddine Rihane1Alain Togbé2Department of Mathematics, University of GhanaDepartment of Mathematics, Institute of Science and Technology, University Center of MilaDepartment of Mathematics and Statistics, Purdue University NorthwestAbstract Let $$k\ge 2$$ k ≥ 2 . A generalization of the well-known Pell sequence is the k-Pell sequence. For this sequence, the first k terms are $$0,\ldots ,0,1$$ 0 , … , 0 , 1 and each term afterwards is given by the linear recurrence $$\begin{aligned} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}. \end{aligned}$$ P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + ⋯ + P n - k ( k ) . In this paper, we extend the previous work (Rihane and Togbé in Ann Math Inform 54:57–71, 2021) and investigate the Padovan and Perrin numbers in the k-Pell sequence.https://doi.org/10.1007/s40065-022-00407-811B3911J86
spellingShingle Benedict Vasco Normenyo
Salah Eddine Rihane
Alain Togbé
Common terms of k-Pell numbers and Padovan or Perrin numbers
Arabian Journal of Mathematics
11B39
11J86
title Common terms of k-Pell numbers and Padovan or Perrin numbers
title_full Common terms of k-Pell numbers and Padovan or Perrin numbers
title_fullStr Common terms of k-Pell numbers and Padovan or Perrin numbers
title_full_unstemmed Common terms of k-Pell numbers and Padovan or Perrin numbers
title_short Common terms of k-Pell numbers and Padovan or Perrin numbers
title_sort common terms of k pell numbers and padovan or perrin numbers
topic 11B39
11J86
url https://doi.org/10.1007/s40065-022-00407-8
work_keys_str_mv AT benedictvasconormenyo commontermsofkpellnumbersandpadovanorperrinnumbers
AT salaheddinerihane commontermsofkpellnumbersandpadovanorperrinnumbers
AT alaintogbe commontermsofkpellnumbersandpadovanorperrinnumbers