Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode

In this investigation, a hydrogen peroxide (H2O2) electrochemical sensor was evaluated. Prussian blue (PB) was electrodeposited at a glassy carbon (GC) electrode modified with titanium dioxide– and zirconia-doped functionalized carbon nanotubes (TiO2.ZrO2-fCNTs), obtaining the PB/TiO2.ZrO2-fCNTs/GC-...

Full description

Bibliographic Details
Main Authors: Lenys Fernández, Jocelyne Alvarez-Paguay, Gema González, Rafael Uribe, Diego Bolaños-Mendez, José Luis Piñeiros, Luis Celi, Patricio J. Espinoza-Montero
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-07-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fchem.2022.884050/full
_version_ 1818523709577625600
author Lenys Fernández
Jocelyne Alvarez-Paguay
Gema González
Gema González
Rafael Uribe
Diego Bolaños-Mendez
José Luis Piñeiros
Luis Celi
Patricio J. Espinoza-Montero
author_facet Lenys Fernández
Jocelyne Alvarez-Paguay
Gema González
Gema González
Rafael Uribe
Diego Bolaños-Mendez
José Luis Piñeiros
Luis Celi
Patricio J. Espinoza-Montero
author_sort Lenys Fernández
collection DOAJ
description In this investigation, a hydrogen peroxide (H2O2) electrochemical sensor was evaluated. Prussian blue (PB) was electrodeposited at a glassy carbon (GC) electrode modified with titanium dioxide– and zirconia-doped functionalized carbon nanotubes (TiO2.ZrO2-fCNTs), obtaining the PB/TiO2.ZrO2-fCNTs/GC-modified electrode. The morphology and structure of the nanostructured material TiO2.ZrO2-fCNTs was characterized by transmission electron microscopy, the specific surface area was determined via Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The electrochemical properties were studied by cyclic voltammetry and chronoamperometry. Titania-zirconia nanoparticles (5.0 ± 2.0 nm) with an amorphous structure were directly synthesized on the fCNT walls, aged during periods of 20 days, obtaining a well-dispersed distribution with a high surface area. The results indicated that the TiO2.ZrO2-fCNT–nanostructured material exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. Covering of the nanotubes with TiO2-ZrO2 nanoparticles is one of the main factors that affected immobilization and sensitivity of the electrochemical biosensor. The electrode modified with TiO2-ZrO2 nanoparticles with the 20-day aging time was superior regarding its reversibility, electric communication, and high sensitivity and improves the immobilization of the PB at the electrode. The fabricated sensor was used in the detection of H2O2 in whey milk samples, presenting a linear relationship from 100 to 1,000 μmol L−1 between H2O2 concentration and the peak current, with a quantification limit (LQ) of 59.78 μmol L−1 and a detection limit (LD) of 17.93 μmol L−1.
first_indexed 2024-12-11T05:48:10Z
format Article
id doaj.art-0e56cc476e2644839f078ee786bd39ac
institution Directory Open Access Journal
issn 2296-2646
language English
last_indexed 2024-12-11T05:48:10Z
publishDate 2022-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Chemistry
spelling doaj.art-0e56cc476e2644839f078ee786bd39ac2022-12-22T01:18:53ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462022-07-011010.3389/fchem.2022.884050884050Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified ElectrodeLenys Fernández0Jocelyne Alvarez-Paguay1Gema González2Gema González3Rafael Uribe4Diego Bolaños-Mendez5José Luis Piñeiros6Luis Celi7Patricio J. Espinoza-Montero8Escuela De Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, EcuadorEscuela De Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, EcuadorYachay Tech University, School of Physical Sciences and Nanotechnology, Urcuqui, EcuadorInstituto Venezolano De Investigaciones Científicas, Centro De Ingeniería Materiales y Nanotecnología, Caracas, VenezuelaDepartamento De Ingeniería Química, Escuela Politécnica Nacional, Quito, EcuadorEscuela De Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, EcuadorEscuela De Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, EcuadorDepartamento De Física, Escuela Politécnica Nacional, Quito, EcuadorEscuela De Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, EcuadorIn this investigation, a hydrogen peroxide (H2O2) electrochemical sensor was evaluated. Prussian blue (PB) was electrodeposited at a glassy carbon (GC) electrode modified with titanium dioxide– and zirconia-doped functionalized carbon nanotubes (TiO2.ZrO2-fCNTs), obtaining the PB/TiO2.ZrO2-fCNTs/GC-modified electrode. The morphology and structure of the nanostructured material TiO2.ZrO2-fCNTs was characterized by transmission electron microscopy, the specific surface area was determined via Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The electrochemical properties were studied by cyclic voltammetry and chronoamperometry. Titania-zirconia nanoparticles (5.0 ± 2.0 nm) with an amorphous structure were directly synthesized on the fCNT walls, aged during periods of 20 days, obtaining a well-dispersed distribution with a high surface area. The results indicated that the TiO2.ZrO2-fCNT–nanostructured material exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. Covering of the nanotubes with TiO2-ZrO2 nanoparticles is one of the main factors that affected immobilization and sensitivity of the electrochemical biosensor. The electrode modified with TiO2-ZrO2 nanoparticles with the 20-day aging time was superior regarding its reversibility, electric communication, and high sensitivity and improves the immobilization of the PB at the electrode. The fabricated sensor was used in the detection of H2O2 in whey milk samples, presenting a linear relationship from 100 to 1,000 μmol L−1 between H2O2 concentration and the peak current, with a quantification limit (LQ) of 59.78 μmol L−1 and a detection limit (LD) of 17.93 μmol L−1.https://www.frontiersin.org/articles/10.3389/fchem.2022.884050/fullcarbon nanotubestitania nanoparticleszirconia nanoparticlesPrussian blueelectrochemical sensors
spellingShingle Lenys Fernández
Jocelyne Alvarez-Paguay
Gema González
Gema González
Rafael Uribe
Diego Bolaños-Mendez
José Luis Piñeiros
Luis Celi
Patricio J. Espinoza-Montero
Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
Frontiers in Chemistry
carbon nanotubes
titania nanoparticles
zirconia nanoparticles
Prussian blue
electrochemical sensors
title Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
title_full Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
title_fullStr Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
title_full_unstemmed Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
title_short Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2–Doped Carbon Nanotube Glassy Carbon-Modified Electrode
title_sort electrochemical sensor for hydrogen peroxide based on prussian blue electrochemically deposited at the tio2 zro2 doped carbon nanotube glassy carbon modified electrode
topic carbon nanotubes
titania nanoparticles
zirconia nanoparticles
Prussian blue
electrochemical sensors
url https://www.frontiersin.org/articles/10.3389/fchem.2022.884050/full
work_keys_str_mv AT lenysfernandez electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT jocelynealvarezpaguay electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT gemagonzalez electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT gemagonzalez electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT rafaeluribe electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT diegobolanosmendez electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT joseluispineiros electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT luisceli electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode
AT patriciojespinozamontero electrochemicalsensorforhydrogenperoxidebasedonprussianblueelectrochemicallydepositedatthetio2zro2dopedcarbonnanotubeglassycarbonmodifiedelectrode