Phylogenomic analysis of the chloroplast genome of the green-tide forming macroalga Ulva intestinalis Linnaeus (Ulvophyceae, Chlorophyta)

Ulva intestinalis Linnaeus 1753 (Ulvophyceae, Chlorophyta) is a marine green macroalga that is distributed on coasts of the Yellow Sea and the Bohai Sea in China. Here, the complete chloroplast genome of U. intestinalis was constructed and analyzed comparatively. The chloroplast genome of U. intesti...

Full description

Bibliographic Details
Main Authors: Hongshu Wang, Feng Liu, Jing Wang, Nansheng Chen
Format: Article
Language:English
Published: Taylor & Francis Group 2021-10-01
Series:Mitochondrial DNA. Part B. Resources
Subjects:
Online Access:http://dx.doi.org/10.1080/23802359.2021.1978889
Description
Summary:Ulva intestinalis Linnaeus 1753 (Ulvophyceae, Chlorophyta) is a marine green macroalga that is distributed on coasts of the Yellow Sea and the Bohai Sea in China. Here, the complete chloroplast genome of U. intestinalis was constructed and analyzed comparatively. The chloroplast genome of U. intestinalis is a 99,041-bp circular molecule that harbors a total of 112 genes including 71 protein-coding genes (PCGs), 26 transfer RNA genes (tRNAs), three ribosomal RNA genes (rRNAs), three free-standing open reading frames (orfs) and nine intronic orfs, and ten introns in seven genes (atpA, infA, psbB, psbC, petB, rrnL, and rrnS). The maximum likelihood (ML) phylogenomic analysis shows that U. intestinalis firstly groups with Ulva compressa, and then these two species together with the Ulva australis–Ulva fenestrata–Ulva rotundata subclade form a monophyletic clade, Ulva lineage II. U. intestinalis chloroplast genome is the only one in Ulva lineage II where the reversal of a collinear block of two genes (psbD–psbC) did not occur, and its genome structure is consistent with that of most chloroplast genomes in Ulva lineage I, indicating that the similarity of genome structure is not completely related to the genetic relationship of Ulva species. Our genomic data will facilitate the development of specific high-resolution chloroplast molecular markers for rapid identification of U. intestinalis, and help us understand its population diversity and genetic characteristics on a global scale.
ISSN:2380-2359