Lower Serum Iron Level Predicts Postoperative Global Cerebral Edema Following Aneurysmal Subarachnoid Hemorrhage

Background: Iron plays an important role in neuronal injury and edema formation after intracranial hemorrhage. However, the role of serum iron in aneurysmal subarachnoid hemorrhage (aSAH) is yet to be well-established. This study aims to identify whether serum iron could predict postoperative global...

Full description

Bibliographic Details
Main Authors: Haojie Wang, Shufa Zheng, Yibin Zhang, Wenjian Fan, Bingsen Xie, Fuxiang Chen, Yuanxiang Lin, Dezhi Kang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/13/9/1232
Description
Summary:Background: Iron plays an important role in neuronal injury and edema formation after intracranial hemorrhage. However, the role of serum iron in aneurysmal subarachnoid hemorrhage (aSAH) is yet to be well-established. This study aims to identify whether serum iron could predict postoperative global cerebral edema (GCE) and poor outcome in aSAH. Methods: 847 patients’ aSAH clinical data were retrospectively collected at the First Affiliated Hospital of Fujian Medical University. Data on demographics, clinical characteristics, and laboratory values were collected and analyzed through univariate and multivariate analyses. Propensity score matching (PSM) analysis was performed to balance the baseline differences between the groups. Results: The incidence of high-grade global cerebral edema (H-GCE) following aSAH was 12.99% (110/847). Serum iron levels [odds ratio (OR) = 1.143; 95% confidence interval (CI), (1.097–1.191); <i>p</i> < 0.001] were associated with the occurrence of H-GCE following aSAH in the univariate analysis. This association remained statistically significant even after adjusting for other variables in the multivariate model, with serum iron having an OR of 1.091 (95% CI, 1.043–1.141; <i>p</i> < 0.001) for GCE. After 1:1 PSM, serum iron levels ≤ 10.7 µmol/L remained a significant independent predictor of GCE (<i>p</i> = 0.002). The receiver operating characteristic (ROC) curve analysis determined that a serum iron cut-off value of ≤ 10.7 µmol/L was optimal for predicting H-GCE [Areas under the ROC curves (AUC) = 0.701, 95% CI, (0.669–0.732), <i>p</i> < 0.001; sensitivity, 67.27%; specificity, 63.77%] in patients with aSAH. Additionally, a trend was observed in which higher Hunt-Hess grades (HH grade) were associated with lower serum iron levels, and higher modified Fisher grades (mFisher grade) were associated with lower serum iron levels. In addition, the serum iron level was also associated with a 3-month functional neurological outcome (<i>p</i> < 0.001). Conclusions: The results of this study indicate that a decreased serum iron level serves as a clinically significant biomarker for the prediction of postoperative GCE and a poor outcome at 3-months in patients with aSAH.
ISSN:2076-3425