Advanced Lubrication Simulations of an Entire Test Rig: Optimization of the Nozzle Orientation to Maximize the Lubrication Capability

In the framework of the H2020 project IDERPLANE, aimed at providing innovative, effective, and validated criteria for the design and assessment of more reliable planet bearings for aerospace application analyzing the problem from a damage tolerance perspective, the present paper presents the numeric...

Full description

Bibliographic Details
Main Authors: Franco Concli, Marco N. Mastrone
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Lubricants
Subjects:
Online Access:https://www.mdpi.com/2075-4442/11/7/300
Description
Summary:In the framework of the H2020 project IDERPLANE, aimed at providing innovative, effective, and validated criteria for the design and assessment of more reliable planet bearings for aerospace application analyzing the problem from a damage tolerance perspective, the present paper presents the numerical study and optimization of a test rig specifically designed for the experiments on the full-test article. Specifically, for the first time ever, an entire system including shafts, gears and bearings with all the rolling elements have been studied with a Finite Volume Computational Fluid Dynamics approach. This ambitious challenge was addressed with the implementation of a new mesh handling technique, namely the Global Remeshing Approach with Mesh Clustering (GRAMC). The aim was to optimize the lubrication of the test article to avoid unexpected failures during the experimental campaign. Three different oil jet directions have been studied and the most effective one, namely the axial one, was selected for the final test rig design.
ISSN:2075-4442