Phase transition kinetics revealed by in situ x-ray diffraction in laser-heated dynamic diamond anvil cells

We report successful coupling of dynamic loading in a diamond anvil cell and stable laser heating, which enables compression rates up to 500 GPa/s along high-temperature isotherms. Dynamic loading in a diamond-anvil cell allows exploration of a wider range of pathways in the pressure-temperature spa...

Full description

Bibliographic Details
Main Authors: Matthew Ricks, Arianna E. Gleason, Francesca Miozzi, Hong Yang, Stella Chariton, Vitali B. Prakapenka, Stanislav V. Sinogeikin, Richard L. Sandberg, Wendy L. Mao, Silvia Pandolfi
Format: Article
Language:English
Published: American Physical Society 2024-03-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.6.013316
Description
Summary:We report successful coupling of dynamic loading in a diamond anvil cell and stable laser heating, which enables compression rates up to 500 GPa/s along high-temperature isotherms. Dynamic loading in a diamond-anvil cell allows exploration of a wider range of pathways in the pressure-temperature space compared to conventional dynamic compression techniques. By in situ x-ray diffraction, we are able to characterize and monitor the structural transitions with the appropriate time resolution i.e., millisecond timescales. Using this method, we investigate the γ-ε phase transition of iron under dynamic compression, reaching compression rates of hundreds of GPa/s and temperatures of 2000 K. Our results demonstrate a distinct response of the γ-ε and α-ε transitions to the high compression rates achieved, possibly due to the different transition mechanisms. These findings open up new avenues to study tailored dynamic compression pathways in the pressure-temperature space and highlight the potential of this platform to capture kinetic effects (over ms time scales) in a diamond anvil cell.
ISSN:2643-1564