Prediction of bulk mechanical properties of PVC foam based on microscopic model:Part I-Microstructure characterization and generation algorithm

The mechanical properties of porous materials greatly depend on their microstructures, so the generation of realistic microstructures is the premise for a sound numerical simulation and analytical prediction. This paper presented the microstructure generation of three kinds of transversely isotropic...

Full description

Bibliographic Details
Main Authors: Yong Zhou, Bin Xue, Weiping Zhang, Renpeng Wang
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Polymer Testing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0142941822003932
Description
Summary:The mechanical properties of porous materials greatly depend on their microstructures, so the generation of realistic microstructures is the premise for a sound numerical simulation and analytical prediction. This paper presented the microstructure generation of three kinds of transversely isotropic closed-cell polyvinyl chloride (PVC) foams with different densities based on the geometric characteristics obtained from the X-ray computed tomography (CT) technology. Advancing front method was used to densely pack a set of spheres whose volume distribution is proportion to the cell volume distribution and the microstructure was formed by Laguerre tessellation. Then the geometric characteristics of the numerical models were compared with those from the CT. The good consistence proves that the proposed method is accurate and efficient to produce the representative microstructure of the PVC foams. Finally, a method was proposed to optimize the microstructure of small size numerical specimens, by which the small specimens could give similar geometric characteristics to those of the large specimens.
ISSN:0142-9418