A C-terminal ataxin-2 disordered region promotes Huntingtin protein aggregation and neurodegeneration in Drosophila models of Huntington’s disease
AbstractThe Ataxin-2 (Atx2) protein contributes to the progression of neurodegenerative phenotypes in animal models of amyotrophic lateral sclerosis (ALS), type 2 spinocerebellar ataxia (SCA-2), Parkinson’s disease, and Huntington’s disease (HD). However, because the Atx2 protein contains multiple s...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Oxford University Press
2021-10-01
|
Series: | G3: Genes, Genomes, Genetics |
Online Access: | https://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab355 |
Summary: | AbstractThe Ataxin-2 (Atx2) protein contributes to the progression of neurodegenerative phenotypes in animal models of amyotrophic lateral sclerosis (ALS), type 2 spinocerebellar ataxia (SCA-2), Parkinson’s disease, and Huntington’s disease (HD). However, because the Atx2 protein contains multiple separable activities, deeper understanding requires experiments to address the exact mechanisms by which Atx2 modulates neurodegeneration (ND) progression. Recent work on two ALS models, C9ORF72 and FUS, in DrosophilaDrosophila |
---|---|
ISSN: | 2160-1836 |