Changes of circulating neuregulin 4 and its relationship with 25-hydroxy vitamin D and other diabetic vascular complications in patients with diabetic peripheral neuropathy

Abstract Background Neuregulin 4 (Nrg4) is a novel neurotrophic adipokine associated with the development of diabetic peripheral neuropathy (DPN), however, the pathological mechanism remains poorly understood. The purpose of our study was to investigate the association of circulating Nrg4 with DPN a...

Full description

Bibliographic Details
Main Authors: Pijun Yan, Zhihong Zhang, Ying Miao, Yong Xu, Jianhua Zhu, Qin Wan
Format: Article
Language:English
Published: BMC 2020-05-01
Series:Diabetology & Metabolic Syndrome
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13098-020-00550-2
Description
Summary:Abstract Background Neuregulin 4 (Nrg4) is a novel neurotrophic adipokine associated with the development of diabetic peripheral neuropathy (DPN), however, the pathological mechanism remains poorly understood. The purpose of our study was to investigate the association of circulating Nrg4 with DPN and 25-hydroxy vitamin D [25(OH)D], a multifunctional secosteroid hormone that regulates other neurotrophic factors and adipokines gene expression, and other diabetic vascular complications. Methods Circulating Nrg4 levels were measured with an ELISA kit in 164 newly diagnosed type 2 diabetes mellitus (nT2DM) patients. The relationship between circulating Nrg4 and DPN and other parameters was analyzed. Results Circulating Nrg4 levels were significantly lower in nT2DM patients with DPN than those without, and subjects in the highest quartile of circulating Nrg4 had significantly lower vibration perception threshold (VPT), the prevalence of DPN, the proportion of persons with VPT > 25 V, and significantly higher circulating 25(OH)D (all P < 0.01). Moreover, circulating Nrg4 was positively and independently associated with 25(OH)D, and was negatively with VPT (P < 0.01 or P < 0.05), but showed no associations with the prevalence of peripheral arterial disease, diabetic nephropathy, and diabetic retinopathy (all P > 0.05). Additionally,the prevalence of DPN and risk of DPN development were progressively decreased with increasing circulating Nrg4 quartiles, independently of potential confounding factors. Conclusions These data demonstrate that decreased levels of circulating Nrg4 might lead to the development of DPN through its close interaction with circulating 25(OH)D not with other diabetic vascular complications. Further prospective studies are needed to identify our findings in these populations.
ISSN:1758-5996