Risk of thyroid dysfunction associated with mRNA and inactivated COVID-19 vaccines: a population-based study of 2.3 million vaccine recipients

Abstract Background In view of accumulating case reports of thyroid dysfunction following COVID-19 vaccination, we evaluated the risks of incident thyroid dysfunction following inactivated (CoronaVac) and mRNA (BNT162b2) COVID-19 vaccines using a population-based dataset. Methods We identified peopl...

Full description

Bibliographic Details
Main Authors: Carlos King Ho Wong, David Tak Wai Lui, Xi Xiong, Celine Sze Ling Chui, Francisco Tsz Tsun Lai, Xue Li, Eric Yuk Fai Wan, Ching Lung Cheung, Chi Ho Lee, Yu Cho Woo, Ivan Chi Ho Au, Matthew Shing Hin Chung, Franco Wing Tak Cheng, Kathryn Choon Beng Tan, Ian Chi Kei Wong
Format: Article
Language:English
Published: BMC 2022-10-01
Series:BMC Medicine
Subjects:
Online Access:https://doi.org/10.1186/s12916-022-02548-1
Description
Summary:Abstract Background In view of accumulating case reports of thyroid dysfunction following COVID-19 vaccination, we evaluated the risks of incident thyroid dysfunction following inactivated (CoronaVac) and mRNA (BNT162b2) COVID-19 vaccines using a population-based dataset. Methods We identified people who received COVID-19 vaccination between 23 February and 30 September 2021 from a population-based electronic health database in Hong Kong, linked to vaccination records. Thyroid dysfunction encompassed anti-thyroid drug (ATD)/levothyroxine (LT4) initiation, biochemical picture of hyperthyroidism/hypothyroidism, incident Graves’ disease (GD), and thyroiditis. A self-controlled case series design was used to estimate the incidence rate ratio (IRR) of thyroid dysfunction in a 56-day post-vaccination period compared to the baseline period (non-exposure period) using conditional Poisson regression. Results A total of 2,288,239 people received at least one dose of COVID-19 vaccination (57.8% BNT162b2 recipients and 42.2% CoronaVac recipients). 94.3% of BNT162b2 recipients and 92.2% of CoronaVac recipients received the second dose. Following the first dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.864, 95% CI 0.670–1.114; CoronaVac: IRR 0.707, 95% CI 0.549–0.912), LT4 initiation (BNT162b2: IRR 0.911, 95% CI 0.716–1.159; CoronaVac: IRR 0.778, 95% CI 0.618–0.981), biochemical picture of hyperthyroidism (BNT162b2: IRR 0.872, 95% CI 0.744–1.023; CoronaVac: IRR 0.830, 95% CI 0.713–0.967) or hypothyroidism (BNT162b2: IRR 1.002, 95% CI 0.838–1.199; CoronaVac: IRR 0.963, 95% CI 0.807–1.149), GD, and thyroiditis. Similarly, following the second dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.972, 95% CI 0.770–1.227; CoronaVac: IRR 0.879, 95%CI 0.693–1.116), LT4 initiation (BNT162b2: IRR 1.019, 95% CI 0.833–1.246; CoronaVac: IRR 0.768, 95% CI 0.613–0.962), hyperthyroidism (BNT162b2: IRR 1.039, 95% CI 0.899–1.201; CoronaVac: IRR 0.911, 95% CI 0.786–1.055), hypothyroidism (BNT162b2: IRR 0.935, 95% CI 0.794–1.102; CoronaVac: IRR 0.945, 95% CI 0.799–1.119), GD, and thyroiditis. Age- and sex-specific subgroup and sensitivity analyses showed consistent neutral associations between thyroid dysfunction and both types of COVID-19 vaccines. Conclusions Our population-based study showed no evidence of vaccine-related increase in incident hyperthyroidism or hypothyroidism with both BNT162b2 and CoronaVac.
ISSN:1741-7015