On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems

This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematica...

Full description

Bibliographic Details
Main Authors: Juncu Gh., Popa C., Sarbu Gh.
Format: Article
Language:English
Published: Sciendo 2021-11-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2021-0040
Description
Summary:This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.
ISSN:1844-0835