A Critical Analysis of Red Ceramic Blocks Roughness Estimation by 2D and 3D Methods

The method of measuring the roughness of ceramic substrates is not consensual, with unsuccessful attempts to associate roughness with the adhesion of coatings because the ceramic blocks have different areas of contact, shapes, and dimensions of the roughness as well as the extrusion process influenc...

Full description

Bibliographic Details
Main Authors: Daiana Cristina Metz Arnold, Valéria Costa de Oliveira, Claudio de Souza Kazmierczak, Leandro Tonietto, Camila Werner Menegotto, Luiz Gonzaga, Cristiano André da Costa, Maurício Roberto Veronez
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/4/789
Description
Summary:The method of measuring the roughness of ceramic substrates is not consensual, with unsuccessful attempts to associate roughness with the adhesion of coatings because the ceramic blocks have different areas of contact, shapes, and dimensions of the roughness as well as the extrusion process influences the mechanical anisotropy of the block. The goal of this work is a quantification and comparison of roughness data obtained by 2D and 3D methods, evaluating the variations of results between the measurement methods and formulating a critical analysis regarding the quality of the information obtained with each method. For this propose, four sets of ceramic blocks with different firing temperature were produced, in order to provide groups of blocks with different surface topographies in which the roughness was estimated. The roughness measurements were made in 4608 regions, resulting in 1536 values using 2D method and 3072 values using 3D method. In the 2D method for ceramic blocks, the measurement orientation strongly influences the result, depending on the measurement position and orientation. The 3D method generates a higher average value and allows to identify roughness variations typical of the ceramic block. The roughness estimation of a ceramic block surface must be done using the 3D method.
ISSN:2072-4292