A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy

The S<sub>2</sub> state produces two basic electron paramagnetic resonance signal types due to the manganese cluster in oxygen-evolving complex, which are influenced by the solvents, and cryoprotectant added to the photosystem II samples. It is presumed that a single manganese center oxi...

Full description

Bibliographic Details
Main Authors: Bernard Baituti, Sebusi Odisitse
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/9/2699
_version_ 1827693322082189312
author Bernard Baituti
Sebusi Odisitse
author_facet Bernard Baituti
Sebusi Odisitse
author_sort Bernard Baituti
collection DOAJ
description The S<sub>2</sub> state produces two basic electron paramagnetic resonance signal types due to the manganese cluster in oxygen-evolving complex, which are influenced by the solvents, and cryoprotectant added to the photosystem II samples. It is presumed that a single manganese center oxidation occurs on S<sub>1</sub> → S<sub>2</sub> state transition. The S<sub>2</sub> state has readily visible multiline and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mn>4.1</mn></mrow></semantics></math></inline-formula> electron paramagnetic resonance signals and hence it has been the most studied of all the Kok cycle intermediates due to the ease of experimental preparation and stability. The S<sub>2</sub> state was studied using electron paramagnetic resonance spectroscopy at X-band frequencies. The aim of this study was to determine the spin states of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mn>4.1</mn></mrow></semantics></math></inline-formula> signal. The multiline signal was observed to arise from a ground state spin ½ centre while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi></mrow></semantics></math></inline-formula>4.1 signal generated at ≈140 K NIR illumination was proposed to arise from a spin <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>5</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> center with rhombic distortion. The ‘ground’ state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal was generated solely or by conversion from the multiline. The data analysis methods used involved numerical simulations of the experimental spectra on relevant models of the oxygen-evolving complex cluster. A strong focus in this paper was on the ‘ground’ state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal, whether it is a rhombic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>5</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> spin state signal or an axial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> spin state signal. The data supported an X-band CW-EPR-generated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal as originating from a near rhombic spin 5/2 of the S<sub>2</sub> state of the PSII manganese cluster.
first_indexed 2024-03-10T11:42:02Z
format Article
id doaj.art-0ea6bcf4cdf044c7aa78fc2c593dbc99
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-10T11:42:02Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-0ea6bcf4cdf044c7aa78fc2c593dbc992023-11-21T18:23:39ZengMDPI AGMolecules1420-30492021-05-01269269910.3390/molecules26092699A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance SpectroscopyBernard Baituti0Sebusi Odisitse1Department of Chemical and Forensic Science, Faculty of Science, Botswana International University of Science and Technology, Private Bag 16, Palapye, BotswanaDepartment of Chemical and Forensic Science, Faculty of Science, Botswana International University of Science and Technology, Private Bag 16, Palapye, BotswanaThe S<sub>2</sub> state produces two basic electron paramagnetic resonance signal types due to the manganese cluster in oxygen-evolving complex, which are influenced by the solvents, and cryoprotectant added to the photosystem II samples. It is presumed that a single manganese center oxidation occurs on S<sub>1</sub> → S<sub>2</sub> state transition. The S<sub>2</sub> state has readily visible multiline and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mn>4.1</mn></mrow></semantics></math></inline-formula> electron paramagnetic resonance signals and hence it has been the most studied of all the Kok cycle intermediates due to the ease of experimental preparation and stability. The S<sub>2</sub> state was studied using electron paramagnetic resonance spectroscopy at X-band frequencies. The aim of this study was to determine the spin states of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mn>4.1</mn></mrow></semantics></math></inline-formula> signal. The multiline signal was observed to arise from a ground state spin ½ centre while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi></mrow></semantics></math></inline-formula>4.1 signal generated at ≈140 K NIR illumination was proposed to arise from a spin <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>5</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> center with rhombic distortion. The ‘ground’ state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal was generated solely or by conversion from the multiline. The data analysis methods used involved numerical simulations of the experimental spectra on relevant models of the oxygen-evolving complex cluster. A strong focus in this paper was on the ‘ground’ state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal, whether it is a rhombic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>5</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> spin state signal or an axial <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula> spin state signal. The data supported an X-band CW-EPR-generated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>g</mi></semantics></math></inline-formula>4.1 signal as originating from a near rhombic spin 5/2 of the S<sub>2</sub> state of the PSII manganese cluster.https://www.mdpi.com/1420-3049/26/9/2699photosystem IIspectrum<i>g</i>4.1 signalmultilineoxidationsimulation
spellingShingle Bernard Baituti
Sebusi Odisitse
A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
Molecules
photosystem II
spectrum
<i>g</i>4.1 signal
multiline
oxidation
simulation
title A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
title_full A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
title_fullStr A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
title_full_unstemmed A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
title_short A Computational Study of the S<sub>2</sub> State in the Oxygen-Evolving Complex of Photosystem II by Electron Paramagnetic Resonance Spectroscopy
title_sort computational study of the s sub 2 sub state in the oxygen evolving complex of photosystem ii by electron paramagnetic resonance spectroscopy
topic photosystem II
spectrum
<i>g</i>4.1 signal
multiline
oxidation
simulation
url https://www.mdpi.com/1420-3049/26/9/2699
work_keys_str_mv AT bernardbaituti acomputationalstudyofthessub2substateintheoxygenevolvingcomplexofphotosystemiibyelectronparamagneticresonancespectroscopy
AT sebusiodisitse acomputationalstudyofthessub2substateintheoxygenevolvingcomplexofphotosystemiibyelectronparamagneticresonancespectroscopy
AT bernardbaituti computationalstudyofthessub2substateintheoxygenevolvingcomplexofphotosystemiibyelectronparamagneticresonancespectroscopy
AT sebusiodisitse computationalstudyofthessub2substateintheoxygenevolvingcomplexofphotosystemiibyelectronparamagneticresonancespectroscopy