A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb

Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffracti...

Full description

Bibliographic Details
Main Authors: J.-L. Hodeau, A. Prat, N. Boudet, N. Blanc, S. Arnaud, J.-L. Hazemann, E. Lahéra, O. Proux, M. Jacquet, P.-O. Autran, C. Dejoie, P. Martinetto
Format: Article
Language:English
Published: International Union of Crystallography 2023-01-01
Series:Journal of Synchrotron Radiation
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S1600577522011250
_version_ 1797960662938288128
author J.-L. Hodeau
A. Prat
N. Boudet
N. Blanc
S. Arnaud
J.-L. Hazemann
E. Lahéra
O. Proux
M. Jacquet
P.-O. Autran
C. Dejoie
P. Martinetto
author_facet J.-L. Hodeau
A. Prat
N. Boudet
N. Blanc
S. Arnaud
J.-L. Hazemann
E. Lahéra
O. Proux
M. Jacquet
P.-O. Autran
C. Dejoie
P. Martinetto
author_sort J.-L. Hodeau
collection DOAJ
description Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20–50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2–5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα1, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB6 reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3–1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.
first_indexed 2024-04-11T00:48:36Z
format Article
id doaj.art-0ea84ef376a3454687f347b75a7bbd0d
institution Directory Open Access Journal
issn 1600-5775
language English
last_indexed 2024-04-11T00:48:36Z
publishDate 2023-01-01
publisher International Union of Crystallography
record_format Article
series Journal of Synchrotron Radiation
spelling doaj.art-0ea84ef376a3454687f347b75a7bbd0d2023-01-05T10:01:29ZengInternational Union of CrystallographyJournal of Synchrotron Radiation1600-57752023-01-0130112613610.1107/S1600577522011250vl5006A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-combJ.-L. Hodeau0A. Prat1N. Boudet2N. Blanc3S. Arnaud4J.-L. Hazemann5E. Lahéra6O. Proux7M. Jacquet8P.-O. Autran9C. Dejoie10P. Martinetto11Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceOSUG-FAME, CNRS-UGA-IRD-INRAe-MétéoFrance, 71 Avenue des Martyrs, 38000 Grenoble, FranceOSUG-FAME, CNRS-UGA-IRD-INRAe-MétéoFrance, 71 Avenue des Martyrs, 38000 Grenoble, FranceLAL, Univ. Paris-Sud XI, CNRS-IN2P3, Orsay, FranceEuropean Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, FranceEuropean Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, FranceInstitut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, FranceDiffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20–50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2–5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα1, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB6 reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3–1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.http://scripts.iucr.org/cgi-bin/paper?S1600577522011250high-resolution powder diffractionmulti-analyser-diffraction filteringheterogeneous materialscompact-rigid multi-analyser
spellingShingle J.-L. Hodeau
A. Prat
N. Boudet
N. Blanc
S. Arnaud
J.-L. Hazemann
E. Lahéra
O. Proux
M. Jacquet
P.-O. Autran
C. Dejoie
P. Martinetto
A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
Journal of Synchrotron Radiation
high-resolution powder diffraction
multi-analyser-diffraction filtering
heterogeneous materials
compact-rigid multi-analyser
title A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
title_full A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
title_fullStr A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
title_full_unstemmed A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
title_short A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb
title_sort compact rigid multi analyser for energy and angle filtering of high resolution x ray experiments part 2 efficiency of a single crystal comb
topic high-resolution powder diffraction
multi-analyser-diffraction filtering
heterogeneous materials
compact-rigid multi-analyser
url http://scripts.iucr.org/cgi-bin/paper?S1600577522011250
work_keys_str_mv AT jlhodeau acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT aprat acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT nboudet acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT nblanc acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT sarnaud acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT jlhazemann acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT elahera acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT oproux acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT mjacquet acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT poautran acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT cdejoie acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT pmartinetto acompactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT jlhodeau compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT aprat compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT nboudet compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT nblanc compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT sarnaud compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT jlhazemann compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT elahera compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT oproux compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT mjacquet compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT poautran compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT cdejoie compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb
AT pmartinetto compactrigidmultianalyserforenergyandanglefilteringofhighresolutionxrayexperimentspart2efficiencyofasinglecrystalcomb