Schwinger-Keldysh effective field theory for stable and causal relativistic hydrodynamics

Abstract We construct stable and causal effective field theories (EFTs) for describing statistical fluctuations in relativistic diffusion and relativistic hydrodynamics. These EFTs are fully non-linear, including couplings to background sources, and enable us to compute n-point time-ordered correlat...

Full description

Bibliographic Details
Main Authors: Akash Jain, Pavel Kovtun
Format: Article
Language:English
Published: SpringerOpen 2024-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2024)162
Description
Summary:Abstract We construct stable and causal effective field theories (EFTs) for describing statistical fluctuations in relativistic diffusion and relativistic hydrodynamics. These EFTs are fully non-linear, including couplings to background sources, and enable us to compute n-point time-ordered correlation functions including the effects of statistical fluctuations. The EFTs we construct are inspired by the Maxwell-Cattaneo model of relativistic diffusion and Müller-Israel-Stewart model of relativistic hydrodynamics respectively, and have been derived using both the Martin-Siggia-Rose and Schwinger-Keldysh formalisms. The EFTs non-linearly realise the dynamical Kubo-Martin-Schwinger (KMS) symmetry, which ensures that n-point correlation functions and interactions in the theory satisfy the appropriate fluctuation-dissipation theorems. Since these EFTs typically admit ultraviolet sectors that are not fixed by the low-energy infrared symmetries, we find that they simultaneously admit multiple realisations of the dynamical KMS symmetry. We also comment on certain obstructions to including statistical fluctuations in the recently-proposed stable and causal Bemfica-Disconzi-Noronha-Kovtun model of relativistic hydrodynamics.
ISSN:1029-8479