Storage of Energy in Constrained Non-Equilibrium Systems

We study a quantity <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> defined as the energy U, stored in non-equilibrium steady states (NESS) over its value i...

Full description

Bibliographic Details
Main Authors: Yirui Zhang, Konrad Giżyński, Anna Maciołek, Robert Hołyst
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/5/557
_version_ 1797567774407524352
author Yirui Zhang
Konrad Giżyński
Anna Maciołek
Robert Hołyst
author_facet Yirui Zhang
Konrad Giżyński
Anna Maciołek
Robert Hołyst
author_sort Yirui Zhang
collection DOAJ
description We study a quantity <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium <inline-formula> <math display="inline"> <semantics> <msub> <mi>U</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>U</mi> <mo>=</mo> <mi>U</mi> <mo>−</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> divided by the heat flow <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mi>U</mi> </msub> </semantics> </math> </inline-formula> going out of the system. A recent study suggests that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> is minimized in steady states (Phys.Rev.E.<b>99</b>, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> with and without constraints and find that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows <inline-formula> <math display="inline"> <semantics> <mrow> <mi>U</mi> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>∗</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mi>U</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.
first_indexed 2024-03-10T19:47:17Z
format Article
id doaj.art-0ebe396e9a464d389e92db31d3fe25ea
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T19:47:17Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-0ebe396e9a464d389e92db31d3fe25ea2023-11-20T00:39:43ZengMDPI AGEntropy1099-43002020-05-0122555710.3390/e22050557Storage of Energy in Constrained Non-Equilibrium SystemsYirui Zhang0Konrad Giżyński1Anna Maciołek2Robert Hołyst3Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, PolandInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, PolandWe study a quantity <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium <inline-formula> <math display="inline"> <semantics> <msub> <mi>U</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>U</mi> <mo>=</mo> <mi>U</mi> <mo>−</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula> divided by the heat flow <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mi>U</mi> </msub> </semantics> </math> </inline-formula> going out of the system. A recent study suggests that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> is minimized in steady states (Phys.Rev.E.<b>99</b>, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> with and without constraints and find that <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">T</mi> </semantics> </math> </inline-formula> is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows <inline-formula> <math display="inline"> <semantics> <mrow> <mi>U</mi> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>∗</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mi>U</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.https://www.mdpi.com/1099-4300/22/5/557non-equilibrium stationary statesenergy fluxesinternal energyideal gasheat transfer
spellingShingle Yirui Zhang
Konrad Giżyński
Anna Maciołek
Robert Hołyst
Storage of Energy in Constrained Non-Equilibrium Systems
Entropy
non-equilibrium stationary states
energy fluxes
internal energy
ideal gas
heat transfer
title Storage of Energy in Constrained Non-Equilibrium Systems
title_full Storage of Energy in Constrained Non-Equilibrium Systems
title_fullStr Storage of Energy in Constrained Non-Equilibrium Systems
title_full_unstemmed Storage of Energy in Constrained Non-Equilibrium Systems
title_short Storage of Energy in Constrained Non-Equilibrium Systems
title_sort storage of energy in constrained non equilibrium systems
topic non-equilibrium stationary states
energy fluxes
internal energy
ideal gas
heat transfer
url https://www.mdpi.com/1099-4300/22/5/557
work_keys_str_mv AT yiruizhang storageofenergyinconstrainednonequilibriumsystems
AT konradgizynski storageofenergyinconstrainednonequilibriumsystems
AT annamaciołek storageofenergyinconstrainednonequilibriumsystems
AT roberthołyst storageofenergyinconstrainednonequilibriumsystems