Network Attack Path Selection and Evaluation Based on Q-Learning

As the coupling relationship between information systems and physical power grids is getting closer, various types of cyber attacks have increased the operational risks of a power cyber-physical System (CPS). In order to effectively evaluate this risk, this paper proposed a method of cross-domain pr...

Full description

Bibliographic Details
Main Authors: Runze Wu, Jinxin Gong, Weiyue Tong, Bing Fan
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/1/285
Description
Summary:As the coupling relationship between information systems and physical power grids is getting closer, various types of cyber attacks have increased the operational risks of a power cyber-physical System (CPS). In order to effectively evaluate this risk, this paper proposed a method of cross-domain propagation analysis of a power CPS risk based on reinforcement learning. First, the Fuzzy Petri Net (FPN) was used to establish an attack model, and Q-Learning was improved through FPN. The attack gain was defined from the attacker’s point of view to obtain the best attack path. On this basis, a quantitative indicator of information-physical cross-domain spreading risk was put forward to analyze the impact of cyber attacks on the real-time operation of the power grid. Finally, the simulation based on Institute of Electrical and Electronics Engineers (IEEE) 14 power distribution system verifies the effectiveness of the proposed risk assessment method.
ISSN:2076-3417