Generalized Ulam-Hyers Stability of Jensen Functional Equation in Šerstnev PN Spaces

We establish a generalized Ulam-Hyers stability theorem in a Šerstnev probabilistic normed space (briefly, Šerstnev PN-space) endowed with ΠM. In particular, we introduce the notion of approximate Jensen mapping in PN-spaces and prove that if an approximate Jensen mappin...

Full description

Bibliographic Details
Main Authors: C. Park, H. Majani, M. Eshaghi Gordji, M. B. Ghaemi
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://dx.doi.org/10.1155/2010/868193
Description
Summary:We establish a generalized Ulam-Hyers stability theorem in a Šerstnev probabilistic normed space (briefly, Šerstnev PN-space) endowed with ΠM. In particular, we introduce the notion of approximate Jensen mapping in PN-spaces and prove that if an approximate Jensen mapping in a Šerstnev PN-space is continuous at a point then we can approximate it by an everywhere continuous Jensen mapping. As a version of a theorem of Schwaiger, we also show that if every approximate Jensen type mapping from the natural numbers into a Šerstnev PN-space can be approximated by an additive mapping, then the norm of Šerstnev PN-space is complete.
ISSN:1025-5834
1029-242X