Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology
Pullorum disease, caused by the <i>Salmonella enterica</i> serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Vaccines |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-393X/11/4/865 |
_version_ | 1797603180694994944 |
---|---|
author | Zhijie Jiang Xiamei Kang Yan Song Xiao Zhou Min Yue |
author_facet | Zhijie Jiang Xiamei Kang Yan Song Xiao Zhou Min Yue |
author_sort | Zhijie Jiang |
collection | DOAJ |
description | Pullorum disease, caused by the <i>Salmonella enterica</i> serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR <i>Salmonella Pullorum</i> infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of <i>Salmonella Pullorum</i> was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against <i>Salmonella Pullorum</i> infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority. |
first_indexed | 2024-03-11T04:26:47Z |
format | Article |
id | doaj.art-0ee0885e548d4a3fa15ad047f470856a |
institution | Directory Open Access Journal |
issn | 2076-393X |
language | English |
last_indexed | 2024-03-11T04:26:47Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Vaccines |
spelling | doaj.art-0ee0885e548d4a3fa15ad047f470856a2023-11-17T21:42:52ZengMDPI AGVaccines2076-393X2023-04-0111486510.3390/vaccines11040865Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse VaccinologyZhijie Jiang0Xiamei Kang1Yan Song2Xiao Zhou3Min Yue4Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaInstitute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaInstitute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaInstitute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaInstitute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaPullorum disease, caused by the <i>Salmonella enterica</i> serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR <i>Salmonella Pullorum</i> infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of <i>Salmonella Pullorum</i> was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against <i>Salmonella Pullorum</i> infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority.https://www.mdpi.com/2076-393X/11/4/865<i>S. Pullorum</i>PstSreverse vaccinologychick infection modelimmunogenicity |
spellingShingle | Zhijie Jiang Xiamei Kang Yan Song Xiao Zhou Min Yue Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology Vaccines <i>S. Pullorum</i> PstS reverse vaccinology chick infection model immunogenicity |
title | Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology |
title_full | Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology |
title_fullStr | Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology |
title_full_unstemmed | Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology |
title_short | Identification and Evaluation of Novel Antigen Candidates against <i>Salmonella Pullorum</i> Infection Using Reverse Vaccinology |
title_sort | identification and evaluation of novel antigen candidates against i salmonella pullorum i infection using reverse vaccinology |
topic | <i>S. Pullorum</i> PstS reverse vaccinology chick infection model immunogenicity |
url | https://www.mdpi.com/2076-393X/11/4/865 |
work_keys_str_mv | AT zhijiejiang identificationandevaluationofnovelantigencandidatesagainstisalmonellapullorumiinfectionusingreversevaccinology AT xiameikang identificationandevaluationofnovelantigencandidatesagainstisalmonellapullorumiinfectionusingreversevaccinology AT yansong identificationandevaluationofnovelantigencandidatesagainstisalmonellapullorumiinfectionusingreversevaccinology AT xiaozhou identificationandevaluationofnovelantigencandidatesagainstisalmonellapullorumiinfectionusingreversevaccinology AT minyue identificationandevaluationofnovelantigencandidatesagainstisalmonellapullorumiinfectionusingreversevaccinology |