Video Analysis and Rule-Based Reasoning for Driving Maneuver Classification at Intersections

We propose a system for monitoring the driving maneuver at road intersections using rule-based reasoning and deep learning-based computer vision techniques. Along with detecting and classifying turning movements online, the system also detects violations such as ignoring STOP signs and failing to yi...

Full description

Bibliographic Details
Main Authors: Zakaria Charouh, Amal Ezzouhri, Mounir Ghogho, Zouhair Guennoun
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9761233/
Description
Summary:We propose a system for monitoring the driving maneuver at road intersections using rule-based reasoning and deep learning-based computer vision techniques. Along with detecting and classifying turning movements online, the system also detects violations such as ignoring STOP signs and failing to yield the right-of-way to other drivers. There is no distinction between temporarily and permanently stopped vehicles in the majority of frameworks proposed in the literature. Therefore, to conduct an accurate right-of-way study, permanently stopped vehicles should be excluded not to confound the results. Moreover, we also propose in this work a low-cost Convolutional Neural Network (CNN)-based object detection framework able to detect moving and temporally stopped vehicles. The detection framework combines the reasoning system with background subtraction and a CNN-based object detector. The obtained results are promising. Compared to the conventional CNN-based methods, the detection framework reduces the execution time of the object detection module by about 30% (i.e., 54.1 instead of 75ms/image) while preserving the same detection reliability. The accuracy of trajectory recognition is 95.32%, that of the zero-speed detection is 96.67%, and the right-of-way detection was perfect.
ISSN:2169-3536