High-precision optical fiber pressure sensor using frequency-modulated continuous-wave laser interference

This work presents a high-precision fiber optic pressure sensor based on frequency-modulated continuous-wave (FMCW) laser interference. The pressure sensor is primarily composed of a diaphragm-type Fabry–Pérot (F–P) cavity, with the diaphragm fabricated using high-elasticity SUS631 stainless steel....

Full description

Bibliographic Details
Main Authors: Lang Bai, Gang Zheng, Bin Sun, Xiongxing Zhang, Qiming Sheng, Yuan Han
Format: Article
Language:English
Published: AIP Publishing LLC 2021-02-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0035643
Description
Summary:This work presents a high-precision fiber optic pressure sensor based on frequency-modulated continuous-wave (FMCW) laser interference. The pressure sensor is primarily composed of a diaphragm-type Fabry–Pérot (F–P) cavity, with the diaphragm fabricated using high-elasticity SUS631 stainless steel. The external air pressure causes the center of the elastic diaphragm to deform, and this deformation results in a change in the F–P cavity length. The FMCW laser-interference method was used to demodulate the change in the length of the cavity and realize high-precision pressure measurements. The experimental results showed that when the pressure measurement is in the range of 0 kPa–600 kPa, an accuracy of 3.8 Pa can be obtained. In addition, the sensor had very good linearity with pressure change (R2 = 0.999 94), repeatability, and stability.
ISSN:2158-3226