RST: Rough Set Transformer for Point Cloud Learning
Point cloud data generated by LiDAR sensors play a critical role in 3D sensing systems, with applications encompassing object classification, part segmentation, and point cloud recognition. Leveraging the global learning capacity of dot product attention, transformers have recently exhibited outstan...
Auteurs principaux: | Xinwei Sun, Kai Zeng |
---|---|
Format: | Article |
Langue: | English |
Publié: |
MDPI AG
2023-11-01
|
Collection: | Sensors |
Sujets: | |
Accès en ligne: | https://www.mdpi.com/1424-8220/23/22/9042 |
Documents similaires
-
Group-in-Group Relation-Based Transformer for 3D Point Cloud Learning
par: Shaolei Liu, et autres
Publié: (2022-03-01) -
DVST: Deformable Voxel Set Transformer for 3D Object Detection from Point Clouds
par: Yaqian Ning, et autres
Publié: (2023-12-01) -
A Registration Method of Overlap Aware Point Clouds Based on Transformer-to-Transformer Regression
par: Yafei Zhao, et autres
Publié: (2024-05-01) -
Win-Former: Window-Based Transformer for Maize Plant Point Cloud Semantic Segmentation
par: Yu Sun, et autres
Publié: (2023-10-01) -
AIFormer: Adaptive Interaction Transformer for 3D Point Cloud Understanding
par: Xutao Chu, et autres
Publié: (2024-11-01)