Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program

We investigate the action of the Lie group $\text{SL}(3,\mathbb{R})$ on the two-dimensional homogeneous space. All the one-parameter subgroups (up to conjugacy) of $\text{SL}(3,\mathbb{R})$ are considered. We discuss the orbits and curvatures of these one-parameter subgroups. We also classify these...

Full description

Bibliographic Details
Main Authors: Debapriya Biswas, Ipsita Rajwar
Format: Article
Language:English
Published: Republic of Armenia National Academy of Sciences 2022-08-01
Series:Armenian Journal of Mathematics
Subjects:
Online Access:http://armjmath.sci.am/index.php/ajm/article/view/659
_version_ 1797947654691356672
author Debapriya Biswas
Ipsita Rajwar
author_facet Debapriya Biswas
Ipsita Rajwar
author_sort Debapriya Biswas
collection DOAJ
description We investigate the action of the Lie group $\text{SL}(3,\mathbb{R})$ on the two-dimensional homogeneous space. All the one-parameter subgroups (up to conjugacy) of $\text{SL}(3,\mathbb{R})$ are considered. We discuss the orbits and curvatures of these one-parameter subgroups. We also classify these subgroups in terms of fixed points.
first_indexed 2024-04-10T21:30:11Z
format Article
id doaj.art-0f028b48ab914063b408e8fc50bd1b68
institution Directory Open Access Journal
issn 1829-1163
language English
last_indexed 2024-04-10T21:30:11Z
publishDate 2022-08-01
publisher Republic of Armenia National Academy of Sciences
record_format Article
series Armenian Journal of Mathematics
spelling doaj.art-0f028b48ab914063b408e8fc50bd1b682023-01-19T13:35:42ZengRepublic of Armenia National Academy of SciencesArmenian Journal of Mathematics1829-11632022-08-01141110.52737/18291163-2022.14.11-1-15Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen programDebapriya Biswas0Ipsita Rajwar1Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur We investigate the action of the Lie group $\text{SL}(3,\mathbb{R})$ on the two-dimensional homogeneous space. All the one-parameter subgroups (up to conjugacy) of $\text{SL}(3,\mathbb{R})$ are considered. We discuss the orbits and curvatures of these one-parameter subgroups. We also classify these subgroups in terms of fixed points. http://armjmath.sci.am/index.php/ajm/article/view/659Lie Group $\text{SL}(3,\mathbb{R})$Homogeneous SpaceIwasawa DecompositionOne-Parameter SubgroupsGroup ActionDerived Representation
spellingShingle Debapriya Biswas
Ipsita Rajwar
Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
Armenian Journal of Mathematics
Lie Group $\text{SL}(3,\mathbb{R})$
Homogeneous Space
Iwasawa Decomposition
One-Parameter Subgroups
Group Action
Derived Representation
title Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
title_full Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
title_fullStr Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
title_full_unstemmed Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
title_short Geometry associated with the $\text{SL}(3,\mathbb{R})$ action on homogeneous space using the Erlangen program
title_sort geometry associated with the text sl 3 mathbb r action on homogeneous space using the erlangen program
topic Lie Group $\text{SL}(3,\mathbb{R})$
Homogeneous Space
Iwasawa Decomposition
One-Parameter Subgroups
Group Action
Derived Representation
url http://armjmath.sci.am/index.php/ajm/article/view/659
work_keys_str_mv AT debapriyabiswas geometryassociatedwiththetextsl3mathbbractiononhomogeneousspaceusingtheerlangenprogram
AT ipsitarajwar geometryassociatedwiththetextsl3mathbbractiononhomogeneousspaceusingtheerlangenprogram