Dirichlet-Neumann bracketing for boundary-value problems on graphs
We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2005-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html |
_version_ | 1811292153002852352 |
---|---|
author | Sonja Currie Bruce A. Watson |
author_facet | Sonja Currie Bruce A. Watson |
author_sort | Sonja Currie |
collection | DOAJ |
description | We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations. |
first_indexed | 2024-04-13T04:41:08Z |
format | Article |
id | doaj.art-0f0a9c523d994733a9297c23880bf55b |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-04-13T04:41:08Z |
publishDate | 2005-08-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-0f0a9c523d994733a9297c23880bf55b2022-12-22T03:01:59ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-08-01200593111Dirichlet-Neumann bracketing for boundary-value problems on graphsSonja CurrieBruce A. WatsonWe consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.http://ejde.math.txstate.edu/Volumes/2005/93/abstr.htmlDifferential operatorsspectrumgraphs. |
spellingShingle | Sonja Currie Bruce A. Watson Dirichlet-Neumann bracketing for boundary-value problems on graphs Electronic Journal of Differential Equations Differential operators spectrum graphs. |
title | Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_full | Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_fullStr | Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_full_unstemmed | Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_short | Dirichlet-Neumann bracketing for boundary-value problems on graphs |
title_sort | dirichlet neumann bracketing for boundary value problems on graphs |
topic | Differential operators spectrum graphs. |
url | http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html |
work_keys_str_mv | AT sonjacurrie dirichletneumannbracketingforboundaryvalueproblemsongraphs AT bruceawatson dirichletneumannbracketingforboundaryvalueproblemsongraphs |