Dirichlet-Neumann bracketing for boundary-value problems on graphs

We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise...

Full description

Bibliographic Details
Main Authors: Sonja Currie, Bruce A. Watson
Format: Article
Language:English
Published: Texas State University 2005-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html
_version_ 1811292153002852352
author Sonja Currie
Bruce A. Watson
author_facet Sonja Currie
Bruce A. Watson
author_sort Sonja Currie
collection DOAJ
description We consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.
first_indexed 2024-04-13T04:41:08Z
format Article
id doaj.art-0f0a9c523d994733a9297c23880bf55b
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T04:41:08Z
publishDate 2005-08-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-0f0a9c523d994733a9297c23880bf55b2022-12-22T03:01:59ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-08-01200593111Dirichlet-Neumann bracketing for boundary-value problems on graphsSonja CurrieBruce A. WatsonWe consider the spectral structure of second order boundary-value problems on graphs. A variational formulation for boundary-value problems on graphs is given. As a consequence we can formulate an analogue of Dirichlet-Neumann bracketing for boundary-value problems on graphs. This in turn gives rise to eigenvalue and eigenfunction asymptotic approximations.http://ejde.math.txstate.edu/Volumes/2005/93/abstr.htmlDifferential operatorsspectrumgraphs.
spellingShingle Sonja Currie
Bruce A. Watson
Dirichlet-Neumann bracketing for boundary-value problems on graphs
Electronic Journal of Differential Equations
Differential operators
spectrum
graphs.
title Dirichlet-Neumann bracketing for boundary-value problems on graphs
title_full Dirichlet-Neumann bracketing for boundary-value problems on graphs
title_fullStr Dirichlet-Neumann bracketing for boundary-value problems on graphs
title_full_unstemmed Dirichlet-Neumann bracketing for boundary-value problems on graphs
title_short Dirichlet-Neumann bracketing for boundary-value problems on graphs
title_sort dirichlet neumann bracketing for boundary value problems on graphs
topic Differential operators
spectrum
graphs.
url http://ejde.math.txstate.edu/Volumes/2005/93/abstr.html
work_keys_str_mv AT sonjacurrie dirichletneumannbracketingforboundaryvalueproblemsongraphs
AT bruceawatson dirichletneumannbracketingforboundaryvalueproblemsongraphs