On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions

In this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions \begin{equation*} \begin{cases} -\mathcal{L}_{K}u=\lambda f(x,u), & {\rm in}\ \Omega, \\ u=0, &{\rm i...

Full description

Bibliographic Details
Main Author: Qing-Mei Zhou
Format: Article
Language:English
Published: University of Szeged 2019-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7269
_version_ 1827951124348403712
author Qing-Mei Zhou
author_facet Qing-Mei Zhou
author_sort Qing-Mei Zhou
collection DOAJ
description In this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions \begin{equation*} \begin{cases} -\mathcal{L}_{K}u=\lambda f(x,u), & {\rm in}\ \Omega, \\ u=0, &{\rm in}\;\mathbb{R}^{n}\backslash\Omega, \\ \end{cases} \end{equation*} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^{n}$ and the nonlinear term $f$ satisfies superlinear at infinity but does not satisfy the the Ambrosetti–Rabinowitz type condition. The aim is to determine the precise positive interval of $\lambda$ for which the problem admits at least two nontrivial solutions by using abstract critical point results for an energy functional satisfying the Cerami condition.
first_indexed 2024-04-09T13:36:53Z
format Article
id doaj.art-0f1133ed1ce44d96a83f569775fa1b01
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:53Z
publishDate 2019-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-0f1133ed1ce44d96a83f569775fa1b012023-05-09T07:53:09ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-03-0120191711210.14232/ejqtde.2019.1.177269On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditionsQing-Mei Zhou0Northeast Forestry University, Harbin, P.R. ChinaIn this note, we deal with the existence of infinitely many solutions for a problem driven by nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions \begin{equation*} \begin{cases} -\mathcal{L}_{K}u=\lambda f(x,u), & {\rm in}\ \Omega, \\ u=0, &{\rm in}\;\mathbb{R}^{n}\backslash\Omega, \\ \end{cases} \end{equation*} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^{n}$ and the nonlinear term $f$ satisfies superlinear at infinity but does not satisfy the the Ambrosetti–Rabinowitz type condition. The aim is to determine the precise positive interval of $\lambda$ for which the problem admits at least two nontrivial solutions by using abstract critical point results for an energy functional satisfying the Cerami condition.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7269integrodifferential operatorsvariational methodweak solutionssign-changing potential
spellingShingle Qing-Mei Zhou
On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
Electronic Journal of Qualitative Theory of Differential Equations
integrodifferential operators
variational method
weak solutions
sign-changing potential
title On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
title_full On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
title_fullStr On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
title_full_unstemmed On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
title_short On a class of superlinear nonlocal fractional problems without Ambrosetti–Rabinowitz type conditions
title_sort on a class of superlinear nonlocal fractional problems without ambrosetti rabinowitz type conditions
topic integrodifferential operators
variational method
weak solutions
sign-changing potential
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7269
work_keys_str_mv AT qingmeizhou onaclassofsuperlinearnonlocalfractionalproblemswithoutambrosettirabinowitztypeconditions