Industrial Performance of Several <i>Lachancea thermotolerans</i> Strains for pH Control in White Wines from Warm Areas

In the current scenario of climatic warming, the over-ripening of grapes increases the sugar content, producing flat and alcoholic wines with low acidity, high pH and low freshness. Additionally, a high pH makes wines more chemically and microbiologically unstable, requiring a higher sulphite conten...

Full description

Bibliographic Details
Main Authors: Cristian Vaquero, Iris Loira, María Antonia Bañuelos, José María Heras, Rafael Cuerda, Antonio Morata
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/8/6/830
Description
Summary:In the current scenario of climatic warming, the over-ripening of grapes increases the sugar content, producing flat and alcoholic wines with low acidity, high pH and low freshness. Additionally, a high pH makes wines more chemically and microbiologically unstable, requiring a higher sulphite content for preservation. Some strains of <i>Lachancea thermotolerans</i> can naturally lower the pH of wine by producing lactic acid from sugars; this pH reduction can reach 0.5 units. The industrial performance of four selected strains has been compared with that of two commercial strains and with that of <i>Saccharomyces cerevisiae</i>. The yeasts were assessed under variable oenological conditions, measuring lactic acid production and fermentative performance at two fermentation temperatures (17 and 27 °C), and in the presence or absence of sulphites (25 and 75 mg/L). Lactic acid production depends on yeast populations, with higher concentrations being reached when the microbial population is close to or above 7-log CFU/mL. A temperature effect on acidification can also be observed, being more intense at higher fermentation temperatures for most strains. Ethanol yield ranged from 7–11% vol., depending on the fermentation conditions (temperature and SO<sub>2</sub>) at day 12 of fermentation, compared with 12% for the <i>S. cerevisiae</i> control in micro-fermentations. The production of fermentative esters was higher at 27 °C compared with 17 °C, which favoured the production of higher alcohols. Volatile acidity was moderate under all fermentation conditions with values below 0.4 g/L.
ISSN:2076-2607