Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities

Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega $, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $(\gamma _{n})_{n\,\in \,\mathbb{N}}$, a sequence of per...

Full description

Bibliographic Details
Main Authors: Capdeboscq, Yves, Ong, Shaun Chen Yang
Format: Article
Language:English
Published: Académie des sciences 2022-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.273/
_version_ 1797651443311706112
author Capdeboscq, Yves
Ong, Shaun Chen Yang
author_facet Capdeboscq, Yves
Ong, Shaun Chen Yang
author_sort Capdeboscq, Yves
collection DOAJ
description Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega $, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $(\gamma _{n})_{n\,\in \,\mathbb{N}}$, a sequence of perturbed conductivity matrices differing from a smooth $\gamma _{0}$ background conductivity matrix on a measurable set well within the domain, and we assume $(\gamma _{n}-\gamma _{0})\gamma _{n}^{-1}(\gamma _{n}-\gamma _{0})\rightarrow 0$ in $L^{1}(\Omega )$. Adapting the limit measure, we show that the general representation formula introduced for bounded contrasts in a previous work from 2003 can be extended to unbounded sequences of matrix valued conductivities.
first_indexed 2024-03-11T16:15:52Z
format Article
id doaj.art-0f5482b508c44098a44edfc1e0cb0555
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:15:52Z
publishDate 2022-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-0f5482b508c44098a44edfc1e0cb05552023-10-24T14:19:41ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692022-02-01360G212715010.5802/crmath.27310.5802/crmath.273Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneitiesCapdeboscq, Yves0https://orcid.org/0000-0003-1271-867XOng, Shaun Chen Yang1Université de Paris and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions (LJLL), F-75006 Paris, FranceMathematical Institute, University of Oxford, OX2 6GG, UKImposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded domain $\Omega $, we study the perturbation incurred by the voltage potential when the conductivity is modified in a set of small measure. We consider $(\gamma _{n})_{n\,\in \,\mathbb{N}}$, a sequence of perturbed conductivity matrices differing from a smooth $\gamma _{0}$ background conductivity matrix on a measurable set well within the domain, and we assume $(\gamma _{n}-\gamma _{0})\gamma _{n}^{-1}(\gamma _{n}-\gamma _{0})\rightarrow 0$ in $L^{1}(\Omega )$. Adapting the limit measure, we show that the general representation formula introduced for bounded contrasts in a previous work from 2003 can be extended to unbounded sequences of matrix valued conductivities.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.273/
spellingShingle Capdeboscq, Yves
Ong, Shaun Chen Yang
Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
Comptes Rendus. Mathématique
title Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
title_full Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
title_fullStr Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
title_full_unstemmed Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
title_short Extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
title_sort extending representation formulas for boundary voltage perturbations of low volume fraction to very contrasted conductivity inhomogeneities
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.273/
work_keys_str_mv AT capdeboscqyves extendingrepresentationformulasforboundaryvoltageperturbationsoflowvolumefractiontoverycontrastedconductivityinhomogeneities
AT ongshaunchenyang extendingrepresentationformulasforboundaryvoltageperturbationsoflowvolumefractiontoverycontrastedconductivityinhomogeneities