Three Hybrid Scatter Search Algorithms for Multi-Objective Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) consists of finding the best scheduling for a set of jobs that should be processed in a specific order using a set of machines. This problem belongs to the NP-hard class problems and has enormous industrial applicability. In the manufacturing area, decision-mak...

Full description

Bibliographic Details
Main Authors: Leo Hernández-Ramírez, Juan Frausto-Solís, Guadalupe Castilla-Valdez, Javier González-Barbosa, Juan-Paulo Sánchez Hernández
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/2/61
Description
Summary:The Job Shop Scheduling Problem (JSSP) consists of finding the best scheduling for a set of jobs that should be processed in a specific order using a set of machines. This problem belongs to the NP-hard class problems and has enormous industrial applicability. In the manufacturing area, decision-makers consider several criteria to elaborate their production schedules. These cases are studied in multi-objective optimization. However, few works are addressed from this multi-objective perspective. The literature shows that multi-objective evolutionary algorithms can solve these problems efficiently; nevertheless, multi-objective algorithms have slow convergence to the Pareto optimal front. This paper proposes three multi-objective Scatter Search hybrid algorithms that improve the convergence speed evolving on a reduced set of solutions. These algorithms are: Scatter Search/Local Search (SS/LS), Scatter Search/Chaotic Multi-Objective Threshold Accepting (SS/CMOTA), and Scatter Search/Chaotic Multi-Objective Simulated Annealing (SS/CMOSA). The proposed algorithms are compared with the state-of-the-art algorithms IMOEA/D, CMOSA, and CMOTA, using the MID, Spacing, HV, Spread, and IGD metrics; according to the experimental results, the proposed algorithms achieved the best performance. Notably, they obtained a 47% reduction in the convergence time to reach the optimal Pareto front.
ISSN:2075-1680