Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation

Pain is a natural protective mechanism and has a warning function signaling imminent or actual tissue damage. Neuropathic pain (NP) results from a dysfunction and derangement in the transmission and signal processing along the nervous system and it is a recognized disease in itself. The prevalence o...

Full description

Bibliographic Details
Main Authors: Domenico Intiso, Mario Basciani, Andrea Santamato, Marta Intiso, Filomena Di Rienzo
Format: Article
Language:English
Published: MDPI AG 2015-06-01
Series:Toxins
Subjects:
Online Access:http://www.mdpi.com/2072-6651/7/7/2454
_version_ 1797999862676979712
author Domenico Intiso
Mario Basciani
Andrea Santamato
Marta Intiso
Filomena Di Rienzo
author_facet Domenico Intiso
Mario Basciani
Andrea Santamato
Marta Intiso
Filomena Di Rienzo
author_sort Domenico Intiso
collection DOAJ
description Pain is a natural protective mechanism and has a warning function signaling imminent or actual tissue damage. Neuropathic pain (NP) results from a dysfunction and derangement in the transmission and signal processing along the nervous system and it is a recognized disease in itself. The prevalence of NP is estimated to be between 6.9% and 10% in the general population. This condition can complicate the recovery from stroke, multiple sclerosis, spinal cord lesions, and several neuropathies promoting persistent disability and poor quality of life. Subjects suffering from NP describe it as burning, itching, lancing, and numbness, but hyperalgesia and allodynia represent the most bothersome symptoms. The management of NP is a clinical challenge and several non-pharmacological and pharmacological interventions have been proposed with variable benefits. Botulinum toxin (BTX) as an adjunct to other interventions can be a useful therapeutic tool for the treatment of disabled people. Although BTX-A is predominantly used to reduce spasticity in a neuro-rehabilitation setting, it has been used in several painful conditions including disorders characterized by NP. The underlying pharmacological mechanisms that operate in reducing pain are still unclear and include blocking nociceptor transduction, the reduction of neurogenic inflammation by inhibiting neural substances and neurotransmitters, and the prevention of peripheral and central sensitization. Some neurological disorders requiring rehabilitative intervention can show neuropathic pain resistant to common analgesic treatment. This paper addresses the effect of BTX-A in treating NP that complicates frequent disorders of the central and peripheral nervous system such as spinal cord injury, post-stroke shoulder pain, and painful diabetic neuropathy, which are commonly managed in a rehabilitation setting. Furthermore, BTX-A has an effect in relief pain that may characterize less common neurological disorders including post-traumatic neuralgia, phantom limb, and complex regional pain syndrome with focal dystonia. The use of BTX-A could represent a novel therapeutic strategy in caring for neuropathic pain whenever common pharmacological tools have been ineffective. However, large and well-designed clinical trials are needed to recommend BTX-A use in the relief of neuropathic pain.
first_indexed 2024-04-11T11:11:25Z
format Article
id doaj.art-0f62d48f5fb34aa88698a2c164bff781
institution Directory Open Access Journal
issn 2072-6651
language English
last_indexed 2024-04-11T11:11:25Z
publishDate 2015-06-01
publisher MDPI AG
record_format Article
series Toxins
spelling doaj.art-0f62d48f5fb34aa88698a2c164bff7812022-12-22T04:27:28ZengMDPI AGToxins2072-66512015-06-01772454248010.3390/toxins7072454toxins7072454Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-RehabilitationDomenico Intiso0Mario Basciani1Andrea Santamato2Marta Intiso3Filomena Di Rienzo4Unit of Neuro-rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG) 71013, ItalyUnit of Neuro-rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG) 71013, ItalyDepartment of Physical Medicine and Rehabilitation, OORR Hospital, University of Foggia, Foggia 71121, ItalyUnit of Neuro-rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG) 71013, ItalyUnit of Neuro-rehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG) 71013, ItalyPain is a natural protective mechanism and has a warning function signaling imminent or actual tissue damage. Neuropathic pain (NP) results from a dysfunction and derangement in the transmission and signal processing along the nervous system and it is a recognized disease in itself. The prevalence of NP is estimated to be between 6.9% and 10% in the general population. This condition can complicate the recovery from stroke, multiple sclerosis, spinal cord lesions, and several neuropathies promoting persistent disability and poor quality of life. Subjects suffering from NP describe it as burning, itching, lancing, and numbness, but hyperalgesia and allodynia represent the most bothersome symptoms. The management of NP is a clinical challenge and several non-pharmacological and pharmacological interventions have been proposed with variable benefits. Botulinum toxin (BTX) as an adjunct to other interventions can be a useful therapeutic tool for the treatment of disabled people. Although BTX-A is predominantly used to reduce spasticity in a neuro-rehabilitation setting, it has been used in several painful conditions including disorders characterized by NP. The underlying pharmacological mechanisms that operate in reducing pain are still unclear and include blocking nociceptor transduction, the reduction of neurogenic inflammation by inhibiting neural substances and neurotransmitters, and the prevention of peripheral and central sensitization. Some neurological disorders requiring rehabilitative intervention can show neuropathic pain resistant to common analgesic treatment. This paper addresses the effect of BTX-A in treating NP that complicates frequent disorders of the central and peripheral nervous system such as spinal cord injury, post-stroke shoulder pain, and painful diabetic neuropathy, which are commonly managed in a rehabilitation setting. Furthermore, BTX-A has an effect in relief pain that may characterize less common neurological disorders including post-traumatic neuralgia, phantom limb, and complex regional pain syndrome with focal dystonia. The use of BTX-A could represent a novel therapeutic strategy in caring for neuropathic pain whenever common pharmacological tools have been ineffective. However, large and well-designed clinical trials are needed to recommend BTX-A use in the relief of neuropathic pain.http://www.mdpi.com/2072-6651/7/7/2454painneuropathic painbotulinum toxinrehabilitation
spellingShingle Domenico Intiso
Mario Basciani
Andrea Santamato
Marta Intiso
Filomena Di Rienzo
Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
Toxins
pain
neuropathic pain
botulinum toxin
rehabilitation
title Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
title_full Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
title_fullStr Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
title_full_unstemmed Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
title_short Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
title_sort botulinum toxin type a for the treatment of neuropathic pain in neuro rehabilitation
topic pain
neuropathic pain
botulinum toxin
rehabilitation
url http://www.mdpi.com/2072-6651/7/7/2454
work_keys_str_mv AT domenicointiso botulinumtoxintypeaforthetreatmentofneuropathicpaininneurorehabilitation
AT mariobasciani botulinumtoxintypeaforthetreatmentofneuropathicpaininneurorehabilitation
AT andreasantamato botulinumtoxintypeaforthetreatmentofneuropathicpaininneurorehabilitation
AT martaintiso botulinumtoxintypeaforthetreatmentofneuropathicpaininneurorehabilitation
AT filomenadirienzo botulinumtoxintypeaforthetreatmentofneuropathicpaininneurorehabilitation